Studi Pengembangan Komponen Implan Paduan Ti6Al4V untuk Aplikasi Biomedis dengan Proses Metal Injection Molding

Dea Anggraheni Pusparasmi(1*), Bambang Suharno(2), Sugeng Supriadi(3)

(1) 
(2) University of Indonesia
(3) University of Indonesia
(*) Corresponding Author

Abstract


Titanium alloy Ti6Al4V is a material that has a combination of mechanical properties required for implants such as good ductility, high corrosion resistance and good biocompatibility, so it is widely used as a material for biomedical implant applications. One method that is currently widely used to produce Ti6Al4V implants is by using the metal injection molding (MIM) process. The MIM process is widely used because it can produce parts more effectively, and low-cost production. One of the important factors in the MIM process is the powder loading of metal powders and the binder system used as feedstock material. So, it is necessary to conduct further studies and in-depth literature review related to this matter. Literature search using the ScienceDirect, a digital database and limited to year 2011-2020. The results of the study show that both the binder and powder loading systems have an influence on the mechanical properties of the injection product, the results are evident that the viscosity of the feedstock decreases with the increase in the shear rate.


Keywords


Metal injection molding; Ti6Al4V; powder loading; binder system

Full Text:

PDF

References


B. P. Statistik, “Statistik Transportasi Darat,” 2018.

B. P. Statistik, “Data Kecelakaan Lalu Lintas,” 2017. [Online]. Available: https://www.bps.go.id/linkTableDinamis/view/id/1134. [Accessed: 18-Dec-2019].

A. Desiartama and I. W. Aryana, “Gambaran Karakteristik Pasien Fraktur Femur Akibat Kecelakaan Lalu Lintas Pada Orang Dewasa Di Rumah Sakit Umum Pusat Sanglah Denpasar Tahun 2013,” E-Jurnal Med., vol. 6, no. 5, pp. 1–4, 2017.

L. I. P. Indonesia, “Padukan Logam Gantikan Tulang,” 2018. [Online]. Available: http://lipi.go.id/lipimedia/Padukan-Logam-Gantikan-Tulang/19869. [Accessed: 18-Dec-2019].

A. T. Sidambe, “Biocompatibility of advanced manufactured titanium implants-A review,” Materials (Basel)., vol. 7, no. 12, pp. 8168–8188, 2014.

A. Dehghan-Manshadi, M. J. Bermingham, M. S. Dargusch, D. H. StJohn, and M. Qian, “Metal injection moulding of titanium and titanium alloys: Challenges and recent development,” Powder Technol., vol. 319, no. December 2018, pp. 289–301, 2017.

G. Thavanayagam and J. E. Swan, “Optimizing hydride-dehydride Ti-6Al-4V feedstock composition for titanium powder injection moulding,” Powder Technol., vol. 355, pp. 688–699, 2019.

M. Gusenbauer and N. R. Haddaway, “Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources,” Res. Synth. Methods, vol. 11, no. 2, pp. 181–217, 2020.

J. H. Wang, Q. N. Shi, C. L. Wu, and J. Xi, “Rheological characteristics of injection molded titanium alloys powder,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 23, no. 9, pp. 2605–2610, 2013.

G. Thavanayagam, K. L. Pickering, J. E. Swan, and P. Cao, “Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection moulding,” Powder Technol., vol. 269, pp. 227–232, 2015.

G. Thavanayagam and J. E. Swan, “Aqueous debinding of polyvinyl butyral based binder system for titanium metal injection moulding,” Powder Technol., vol. 326, pp. 402–410, 2018.

D. Lin et al., “Rheological and thermal debinding properties of blended elemental Ti-6Al-4V powder injection molding feedstock,” Powder Technol., vol. 311, pp. 357–363, 2017.

M. R. Raza et al., “Effects of binder system and processing parameters on formability of porous Ti/HA composite through powder injection molding,” Mater. Des., vol. 87, pp. 386–392, 2015.

A. T. Sidambe, W. L. Choong, H. G. C. Hamilton, and I. Todd, “Correlation of metal injection moulded Ti6Al4V yield strength with resonance frequency (PCRT) measurements,” Mater. Sci. Eng. A, vol. 568, pp. 220–227, 2013.

P. Cao and M. D. Hayat, Feedstock Technology for Reactive Metal Injection Molding. Elsevier, 2020.

D. F. Heaney, Handbook of Metal Injection Molding. 2012.




DOI: http://dx.doi.org/10.30998/string.v6i1.10033

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Dea Anggraheni Pusparasmi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats

Flag Counter