Recent One Decade Trends in Mathematical Representation Research: Systematic Mapping Study
(1) Universitas PGRI Semarang
(2) 
(3) 
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Arakawa, T., Creutzig, T., & Feigin, B. (2022). Urod algebras and Translation of W-algebras. Forum of Mathematics, Sigma, 10. https://doi.org/10.1017/fms.2022.15
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Aria, M., Misuraca, M., & Spano, M. (2020). Mapping the Evolution of Social Research and Data Science on 30 Years of Social Indicators Research. Social Indicators Research, 149(3), 803–831. https://doi.org/10.1007/s11205-020-02281-3
Bai, C., Zhao, T., Wang, W., & Wu, M. (2015). An efficient indexing scheme based on K-Plet representation for fingerprint database (B. V., H. D.-S., & P. P. (eds.); Vol. 9225, pp. 247–257). Springer Verlag. https://doi.org/10.1007/978-3-319-22180-9_25
Bakar, K. A., Mohamed, S., Yunus, F., & Karim, A. A. (2020). Use of multiple representations in understanding addition: The case of pre-school children. International Journal of Learning, Teaching and Educational Research, 19(2), 292–304. https://doi.org/10.26803/IJLTER.19.2.18
Bille, P., Li Gørtz, I., & Vind, S. (2015). Compressed data structures for range searching (D. A.-H., M.-V. C., F. E., & T. B. (eds.); Vol. 8977, pp. 577–586). Springer Verlag. https://doi.org/10.1007/978-3-319-15579-1_45
Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B., & Schaub, T. (2016). Answer Set Programming Modulo Acyclicity. Fundamenta Informaticae, 147(1), 63–91. https://doi.org/10.3233/FI-2016-1398
Bouissou, M. (2020). Automatic translation from dynamic models to boolean representation suitable for i&ab quantification (B. P., D. M. F., & Z. E. (eds.); pp. 1868–1875). Research Publishing, Singapore. https://doi.org/10.3850/978-981-14-8593-0_4865-cd
Brazhnikova, Y. A. (2016). Innovative technique of working with music text by symmetry operations. Integration of Education, 20(4), 507–521. https://doi.org/10.15507/1991-9468.085.020.201604.507-521
Búrigo, E. Z., & Da Rosa, N. G. (2021). Machines and numbers: Translations of Nicole Picard’s texts in Porto Alegre during the 1970s . Educacao and Realidade, 46(2). https://doi.org/10.1590/2175-6236112151
Cao, J.-X., Yang, R.-H., & He, L.-M. (2019). Effect of subtitle presentation types on students’ learning outcome and cognitive load. 144–147. https://doi.org/10.1145/3369255.3369268
Castro-Alonso, J. C., Wong, R. M., Adesope, O. O., & Paas, F. (2021). Effectiveness of Multimedia Pedagogical Agents Predicted by Diverse Theories: a Meta-Analysis. Educational Psychology Review, 33(3), 989–1015. https://doi.org/10.1007/s10648-020-09587-1
Ceccherini-Silberstein, T., Scarabotti, F., & Tolli, F. (2022). Representations of Finite Group Extensions via Projective Representations. In Springer Monographs in Mathematics (pp. 189–228). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-13873-7_7
Dorrek, F. (2017). Minkowski Endomorphisms. Geometric and Functional Analysis, 27(3), 466–488. https://doi.org/10.1007/s00039-017-0405-z
Gao, W., & Chen, Y. (2020). Approximation analysis of ontology learning algorithm in linear combination setting. Journal of Cloud Computing, 9(1). https://doi.org/10.1186/s13677-020-00173-y
Greiner-Petter, A., Schubotz, M., Breitinger, C., Scharpf, P., Aizawa, A., & Gipp, B. (2023). Do the Math: Making Mathematics in Wikipedia Computable. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4), 4384–4395. https://doi.org/10.1109/TPAMI.2022.3195261
Gülk?l?ka, H., U?urlub, H. H., & Yürükc, N. (2015). Examining students’ mathematical understanding of geometric transformations using the pirie-kieren model. Kuram ve Uygulamada Egitim Bilimleri, 15(6), 1531–1548. https://doi.org/10.12738/estp.2015.6.0056
Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A., Fu, S., Tufano, M., Deng, S. K., Clement, C., Drain, D., Sundaresan, N., Yin, J., Jiang, D., & Zhou, M. (2021). GRAPHCODEBERT: PRE-TRAINING CODE REPRESENTATIONS WITH DATA FLOW. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139426637&partnerID=40&md5=887d147a2eac53b296f7973e2bb16380
Helingo, D. D. Z., Amin, S. M., & Masriyah, M. (2019). Translation process of mathematics representation: From graphics to symbols and vice versa (P. P.W. (ed.); Vol. 1188, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1188/1/012055
Iancu, M., Kohlhase, M., Rabe, F., & Urban, J. (2013). The Mizar mathematical library in OMDoc: Translation and applications. Journal of Automated Reasoning, 50(2), 191–202. https://doi.org/10.1007/s10817-012-9271-4
Ikeda, T., & Stephens, M. (2015). Reconsidering the Roles and Characteristics of Models in Mathematics Education. In International Perspectives on the Teaching and Learning of Mathematical Modelling (pp. 351–361). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-319-18272-8_29
Istadi, Kusmayadi, T. A., & Sujadi, I. (2017). Students’ mathematical representations on secondary school in solving trigonometric problems. 855(1). https://doi.org/10.1088/1742-6596/855/1/012021
Kohlhase, M., Müller, D., Owre, S., & Rabe, F. (2017). Making PVS accessible to generic services by interpretation in a universal format: Vol. 10499 LNCS (M. C.A. & A.-R. M. (eds.); pp. 319–335). Springer Verlag. https://doi.org/10.1007/978-3-319-66107-0_21
Lemus, E., Bribiesca, E., & Garduño, E. (2015). Surface trees - Representation of boundary surfaces using a tree descriptor. Journal of Visual Communication and Image Representation, 31, 101–111. https://doi.org/10.1016/j.jvcir.2015.06.004
Mainali, B. (2021). Representation in teaching and learning mathematics. International Journal of Education in Mathematics, Science and Technology, 9(1), 1–21. https://doi.org/10.46328/ijemst.1111
Mazo, L., & Baudrier, É. (2017). Study on the digitization dual combinatorics and convex case: Vol. 10502 LNCS (K. W.G., A. N.M., & J. I. (eds.); pp. 363–374). Springer Verlag. https://doi.org/10.1007/978-3-319-66272-5_29
Mbusi, N. P., & Luneta, K. (2021). Mapping pre-service teachers’ faulty reasoning in geometric translations to the design of Van Hiele phase-based instruction. South African Journal of Childhood Education, 11(1). https://doi.org/10.4102/sajce.v11i1.871
Munthe-Kaas, H. Z. (2016). Groups and symmetries in numerical linear algebra. In Lecture Notes in Mathematics (Vol. 2173, pp. 319–406). Springer Verlag. https://doi.org/10.1007/978-3-319-49887-4_5
Nitsch, R., Fredebohm, A., Bruder, R., Kelava, A., Naccarella, D., Leuders, T., & Wirtz, M. (2015). STUDENTS’ COMPETENCIES IN WORKING WITH FUNCTIONS IN SECONDARY MATHEMATICS EDUCATION—EMPIRICAL EXAMINATION OF A COMPETENCE STRUCTURE MODEL. International Journal of Science and Mathematics Education, 13(3), 657–682. https://doi.org/10.1007/s10763-013-9496-7
Padalkar, S., & Hegarty, M. (2015). Models as feedback: Developing representational competence in chemistry. Journal of Educational Psychology, 107(2), 451–466. https://doi.org/10.1037/a0037516
Parta, I. N., Sa’dijah, C., Sirajuddin, & Sukoriyanto. (2021). How do prospective teachers solve the algebra problem as a broad measure (S. H., H. H., & R. D. (eds.); Vol. 2330). American Institute of Physics Inc. https://doi.org/10.1063/5.0043738
Peng, F., Li, J., & Long, M. (2015). A lossless watermarking algorithm for STL model using entity rearrangement based on average coding tree. Journal of Computational Information Systems, 11(8), 2895–2904. https://doi.org/10.12733/jcis14064
Sandie, Purwanto, Subanji, & Hidayanto, E. (2019). Process thinking of students in translating representation of covariational dynamic events problems. International Journal of Scientific and Technology Research, 8(10), 1405–1408. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074175739&partnerID=40&md5=3ca4072de2b037887fd5e46b1b299bf1
Selkälä, A., Callegaro, M., & Couper, M. P. (2020). Automatic versus manual forwarding in web surveys - a cognitive load perspective on satisficing responding: Vol. 12194 LNCS (M. G. (ed.); pp. 130–155). Springer. https://doi.org/10.1007/978-3-030-49570-1_10
Shestakova, M. (2018). Visualization of the philosophical and conceptual foundations of modern natural sciences in renaissance painting. Praxema, 186(4), 263–272. https://doi.org/10.23951/2312-7899-2018-4-263-272
Tan, S., Clivaz, S., & Sakamoto, M. (2022). Presenting multiple representations at the chalkboard: bansho analysis of a Japanese mathematics classroom. Journal of Education for Teaching. https://doi.org/10.1080/02607476.2022.2150538
Taxipulati, S., & Lu, H.-D. (2021). The Influence of Feedback Content and Feedback Time on Multimedia Learning Achievement of College Students and Its Mechanism. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.706821
Tomita, K. (2018). Does the Visual Appeal of Instructional Media Affect Learners’ Motivation Toward Learning? TechTrends, 62(1), 103–112. https://doi.org/10.1007/s11528-017-0213-1
Tugtekin, U., & Odabasi, H. F. (2022). Do Interactive Learning Environments Have an Effect on Learning Outcomes, Cognitive Load and Metacognitive Judgments? Education and Information Technologies, 27(5), 7019–7058. https://doi.org/10.1007/s10639-022-10912-0
Uysal, M. P. (2016). Evaluation of learning environments for object-oriented programming: measuring cognitive load with a novel measurement technique. Interactive Learning Environments, 24(7), 1590–1609. https://doi.org/10.1080/10494820.2015.1041400
Van Den Eynde, S., Van Kampen, P., Van Dooren, W., & De Cock, M. (2019). Translating between graphs and equations: The influence of context, direction of translation, and function type. Physical Review Physics Education Research, 15(2). https://doi.org/10.1103/PhysRevPhysEducRes.15.020113
Waisman, I., Brunner, C., Grabner, R. H., Leikin, M., & Leikin, R. (2023). (Lack of) neural efficiency related to general giftedness and mathematical excellence: An EEG study. Neuropsychologia, 179. https://doi.org/10.1016/j.neuropsychologia.2022.108448
Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2014). Brain Activity Associated With Translation Between Graphical And Symbolic Representations Of Functions In Generally Gifted And Excelling In Mathematics Adolescents. International Journal of Science and Mathematics Education, 12(3), 669–696. https://doi.org/10.1007/s10763-014-9513-5
Waite, A., & Byrne, W. (2015). The geometry of statistical machine translation. 376–386. https://doi.org/10.3115/v1/n15-1041
Yu, M., Bai, C., Yu, J., Zhao, M., Xu, T., Liu, H., Li, X., & Yu, R. (2022). Translation-Based Embeddings with Octonion for Knowledge Graph Completion. Applied Sciences (Switzerland), 12(8). https://doi.org/10.3390/app12083935
DOI: http://dx.doi.org/10.30998/formatif.v14i2.21652
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Formatif: Jurnal Ilmiah Pendidikan MIPA
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Publisher: Institute for Research and Community Services (LPPM) Universitas Indraprasta PGRI Kampus A Building 3, 2nd Floor | Jl. Nangka No. 58 C (TB. Simatupang), Kel. Tanjung Barat, Kec. Jagakarsa, Jakarta Selatan 12530, Jakarta, Indonesia. |
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
View My Stats