Tren Marketplace Berdasarkan Klasifikasi Ulasan Pelanggan Menggunakan Perbandingan Kernel Support Vector Machine
(1) Universitas Singaperbangsa Karawang
(2) Universitas Singaperbangsa Karawang
(3) Universitas Singaperbangsa Karawang
(*) Corresponding Author
Abstract
Currently, many Indonesian people like to conduct online trading transactions. However, a number of business people find it difficult to choose a marketplace to market their products. One of the reasons is because they rarely pay attention to the marketplace trends that consumers are discussing. Therefore, analyzing trends on social media such as Twitter, it becomes very important for business people to understand the pattern of consumer tendencies towards their services or products. So the purpose of this study is to create a model that can analyze marketplace trends based on the classification of customer reviews on Twitter using the SVM algorithm. The kernels used are linear, RBF, sigmoid, and polynomial with parameter optimization using grid search. The methodology used is KDD. The results of the evaluation of the best classification model are the sigmoid kernel with 92% accuracy, 92% precision, 92% recall, and 92% F1 score and parameters C=100, =0.01, and r=1. Market trend results based on the highest percentage of positive reviews are Tokopedia, Shopee, and lastly Bukalapak.
Keywords
Full Text:
PDFReferences
Muljono, D. P. Artanti, A. Syukur, A. Prihandono, and D. R. I. M. Setiadi, “Analisa Sentimen Untuk Penilaian Pelayanan Situs Belanja Online Menggunakan Algoritma Naïve Bayes,” Konf. Nas. Sist. Inf. 2018, pp. 165–170, 2018.
B. Ramadhan, “Data Internet di Indonesia dan Perilakunya Tahun 2020,” teknoia.com, 2020. https://teknoia.com/data-internet-di-indonesia-dan-perilakunya-880c7bc7cd19 (accessed Nov. 24, 2020).
D. H. Jayani, “Shopee, E-Commerce dengan Pengunjung Situs Tertinggi Kuartal III 2020,” databooks, 2020. https://databoks.katadata.co.id/datapublish/2020/11/20/shopee-e-commerce-dengan-pengunjung-situs-tertinggi-kuartal-iii-2020 (accessed Nov. 24, 2020).
U. A. Nasron and M. Habibi, “Analysis of Marketplace Conversation Trends on Twitter Platform Using K-Means,” Compiler, vol. 9, no. 1, pp. 51–61, 2020, doi: 10.28989/compiler.v9i1.579.
D. Pajri, Y. Umaidah, and T. N. Padilah, “K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 242–253, 2020, doi: http://dx.doi.org/10.28932/jutisi.v6i2.2658.
A. A. Lutfi, A. E. Permanasari, and S. Fauziati, “Corrigendum: Sentiment Analysis in the Sales Review of Indonesian Marketplace by Utilizing Support Vector Machine,” J. Inf. Syst. Eng. Bus. Intell., vol. 4, no. 1, pp. 57–64, 2018, doi: http://dx.doi.org/10.20473/jisebi.4.1.57-64.
J. H. Jaman and R. Abdulrohman, “Sentiment Analysis of Customers on Utilizing Online Motorcycle Taxi Service at Twitter with the Support Vector Machine,” Int. Conf. Electr. Eng. Comput. Sci. 2019, pp. 231–234, 2019.
W. D. Wicaksono, “Klasifikasi Analisis Sentimen Movie Review dengan Metode Support Vector Machine Menggunakan Kernel Radial Basis Function dan Information Gain,” Thesis. Universitas Negeri Semarang, Semarang, 2020.
J. Han, M. Kamber, and J. Pei, Data mining: Data mining concepts and techniques, Third Edit. Waltham: Morgan Kaufmann, 2012.
Z. Singla, S. Randhawa, and S. Jain, “Sentiment Analysis on Product Reviews using Machine Learning Techniques,” 2017 Int. Conf. Intell. Comput. Control, pp. 1–5, 2017, doi: 10.1109/I2C2.2017.8321910.
M. N. Akbar, “Klasifikasi Bibliografi Otomatis Menggunakan C4.5 dan Information Gain,” J. Inform. Sains dan Teknol., vol. 6, no. 1, pp. 46–55, 2021, doi: https://doi.org/10.24252/instek.v6i1.18636.
J. F. Tuttle, L. D. Blackburn, and K. M. Powell, “On-line Classification of Coal Combustion Quality using Nonlinear SVM for Improved Neural Network NOx Emission Rate Prediction,” Comput. Chem. Eng., vol. 141, pp. 1–11, 2020, doi: 10.1016/j.compchemeng.2020.106990.
J. M. Rudd, “Application of Support Vector Machine Modeling and Graph Theory Metrics for Disease Classification,” Model Assist. Stat. Appl., vol. 13, pp. 341–349, 2018, doi: 10.3233/MAS-180444.
M. A. Nanda, K. B. Seminar, D. Nandika, and A. Maddu, “A comparison study of kernel functions in the support vector machine and its application for termite detection,” Information, vol. 9, no. 5, pp. 1–14, 2018, doi: 10.3390/info9010005.
DOI: http://dx.doi.org/10.30998/string.v6i1.9993
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Dwi Latifah Rianti, Yuyun Umaidah, Apriade Voutama
This work is licensed under a Creative Commons Attribution 4.0 International License.
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats