Aplikasi Chatbot Berbasis Teks Menggunakan Algoritma Naive Bayes Classifier FAQ GrabAds

Rena Cahya Hutama(1*), Fauziah Fauziah(2), Ratih Titi Komalasari(3)

(1) Universitas Nasional
(2) Universitas Nasional
(3) Universitas Nasional
(*) Corresponding Author

Abstract


Almost all aspects of human life has been touched by the development of information and communication technology. Especially in the current pandemic where face-to-face interactions are very limited, so sometimes information is not conveyed clearly and precisely. For example, in the case of work when there are new employees who have difficulty getting information or just asking colleagues because they cannot convey information clearly. The lack of access and the amount of access needed to obtain certain information makes it difficult for new employees to work even though the questions asked are the same questions asked by one employee or another. Chatbot is the result of technological innovation that aims to facilitate the process of exchanging information by using interactive programs. With this text-based Chatbot application, you can minimize the time needed to answer questions because it is automated. The Naive Bayes Classifier algorithm was used in making Chatbot in this study by previously creating a collection of frequently arising questions (FAQ) containing 10 questions and their answers which will be used as a dataset. By using a split ratio of 0.8 and a total of 60 questions, the resulting accuracy value is 93.33% and the error value is 6.66%.

Keywords


Algorithm; applicatio; chatbot; FAQ; naive bayes classifier

Full Text:

PDF

References


S. Pardeshi, S. Ovhal, P. Shinde, M. Bansode, and A. Birajdar, “A Survey on Consensus Algorithms used in Blockchain Platforms,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 5, pp. 9155–9162, 2020, doi: 10.30534/ijatcse/2020/323952020.

I. Anggraini and Y. N. Kunang, “Telematika Penerapan Naive Bayes pada Pendeteksian Malware dengan Diskritisasi Variabel,” vol. 13, no. 1, pp. 11–21, 2020.

A. P. Wijaya and H. A. Santoso, “Naive Bayes Classification pada Klasifikasi Dokumen Untuk Identifikasi Konten E-Government,” J. Appl. Intell. Syst., vol. 1, no. 1, pp. 48–55, 2016, [Online]. Available: https://publikasi.dinus.ac.id/index.php/jais/issue/view/76.

H. H. Herwin, “Super Agent Chatbot ‘3S’ Sebagai Media Informasi Menggunakan Metoda Natural Language Processing(NLP),” J. Teknol. Dan Open Source, vol. 2, no. 1, pp. 53–64, 2019, doi: 10.36378/jtos.v2i1.144.

M. Y. H. Setyawan, R. M. Awangga, and S. R. Efendi, “Comparison Of Multinomial Naive Bayes Algorithm And Logistic Regression For Intent Classification In Chatbot,” Proc. 2018 Int. Conf. Appl. Eng. ICAE 2018, no. October, pp. 1–5, 2018, doi: 10.1109/INCAE.2018.8579372.

M. Sarosa, M. Junus, M. U. Hoesny, Z. Sari, and M. Fatnuriyah, “Classification technique of interviewer-bot result using naive bayes and phrase reinforcement algorithms,” Int. J. Emerg. Technol. Learn., vol. 13, no. 2, pp. 33–47, 2018, doi: 10.3991/ijet.v13i02.7173.

M. Anggraeni, M. Syafrullah, and H. A. Damanik, “Literation Hearing Impairment (I-Chat Bot): Natural Language Processing (NLP) and Naive Bayes Method,” J. Phys. Conf. Ser., vol. 1201, no. 1, 2019, doi: 10.1088/1742-6596/1201/1/012057.

D. Zumstein and S. Hundertmark, “Chatbots : an interactive technology for personalized communication and transaction,” IADIS Int. J. www/Internet, vol. 15, no. 1, pp. 96–109, 2018.

R. Primartha, Algoritma Machine Learning. Informatika Bandung, 2021.

Z. Sari, M. Sarosa, and S. Suhari, “‘Si Tole’ Chatterbot untuk Melatih Rasa Percaya Diri Menggunakan Naive Bayes Classification,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 7, no. 1, pp. 64–71, 2018, doi: 10.22146/jnteti.v7i1.402.

F. Fathoni, E. Afrianti, and R. I. Heroza, “Klasifikasi Teks dengan Naive Bayes Classifier (NBC) untuk Pengelompokan Keterangan Laporan dan Durasi Recovery Time Laporan Gangguan Listrik PT. PLN (Persero) WS2JB Area Palembang,” JSI J. Sist. Inf., vol. 12, no. 1, pp. 1955–1961, 2020, doi: 10.36706/jsi.v12i1.9586.

F. Handayani and S. Pribadi, “Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center 110,” J. Tek. Elektro, vol. 7, no. 1, pp. 19–24, 2015, doi: 10.15294/jte.v7i1.8585.




DOI: http://dx.doi.org/10.30998/string.v6i1.9919

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Rena Cahya Hutama

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats

Flag Counter