Analisis dan Model Peramalan Data Ekspor-Impor dengan Metode Gabungan ARIMA-Neural Networks

Aris Gunaryati(1*)

(1) Fakultas Teknologi Komunikasi dan Informatika - Universitas Nasional
(*) Corresponding Author

Abstract


An accurate forecasting model for a time series data is still difficult to obtain if the data is complex. This study aims to analyze and make the model of import export data forecasting with the combined method ARIMA - Neural Networks. This method is expected to improve NN's ability to complex problems and improve forecasting accuracy. The forecasting model obtained is used to predict the value of import-export in the next period. From the available data, ARIMA forecasting model for export value is ARIMA (1,1,12) with error 0,968 and forecasting model of NN with sigmoid bipolar gives error 0,180732 while NN model with semilinier gives error 0,081521 . For import value, obtained ARIMA (0, 1, 0) model with error 0,971 and forecasting model of NN with sigmoid bipolar gives error 1,437723 while model of NN with semilinier gives error 0,957831. Based on these results, a combined forecasting model of ARIMA and Neural Network with a semilinier activation function will be performed because it has a smaller error value compared to the sigmoid bipolar activation function. The ARIMA- NNforecasting model with the semilinier activation function yield error 0.046010 for the export value data and 1.081964 for the import value data.


Keywords


Forecasting, Time Series, ARIMA, Neural Network, ARIMA-NN

Full Text:

PDF (Indonesian)

References


DT Wiyanti, R Pulungan. (2012). Peramalan Deret Waktu Menggunakan Model Fungsi Basis Radial (RBF) dan Auto Regessive Integrated Moving Average (ARIMA), Jurnal MIPA, 35 (2) : 175-182 (2012)

Faruk DO. (2010). A Hybrid Neural Network and ARIMA Model for Water Quality Time Series Prediction. Engineering Application Intelligence, 23:586-594.

Fauziah L & Suhartono. (2012). Peramalan Jumlah Kedatangan Wisatawan Mancanegara ke Indonesia melalui Lima Pintu Kedatangan Utama Mengggunakan Model Hibrida ARIMA-ANFIS. Makalah Tugas Akhir. Jurusan Statistika FMIPA-ITS. Surabaya.

Munarsih E. (2011). Penerapan Model ARIMA Neural Network Hybrid untuk Peramalan Time Series. Thesis. S2 Matematika FMIPA Universitas Gadjah Mada. Yogyakarta.

Sutijo, B., Subanar, & Guritno, S. (2006). Pemilihan Hubungan Input Node pada Jaringan Syaraf Fungsi Radial Basis. Berkala MIPA 16(1):55-61.

Terui N & Van Dijk HK. (2002). Combined Forecast from Linear and nonlinear Time Series Model. International Journal of Forecasting, 18 (3):421-438.

Zhang G. 2003. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Journal Neurocomputing, 50:159-175.

Zheng F & Zhong S. 2011. Time series forecasting using a hybrid RBF neural network and AR model based on binomial smoothing. World Academy of Science. Eng Technol 75:1471- 1475.




DOI: http://dx.doi.org/10.30998/string.v2i1.1698

Refbacks



Copyright (c) 2017 STRING (Satuan Tulisan Riset dan Inovasi Teknologi)

 

STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats

Flag Counter