Analisis dan Model Peramalan Data Ekspor-Impor dengan Metode Gabungan ARIMA-Neural Networks
(1) Fakultas Teknologi Komunikasi dan Informatika - Universitas Nasional
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDF (Indonesian)References
DT Wiyanti, R Pulungan. (2012). Peramalan Deret Waktu Menggunakan Model Fungsi Basis Radial (RBF) dan Auto Regessive Integrated Moving Average (ARIMA), Jurnal MIPA, 35 (2) : 175-182 (2012)
Faruk DO. (2010). A Hybrid Neural Network and ARIMA Model for Water Quality Time Series Prediction. Engineering Application Intelligence, 23:586-594.
Fauziah L & Suhartono. (2012). Peramalan Jumlah Kedatangan Wisatawan Mancanegara ke Indonesia melalui Lima Pintu Kedatangan Utama Mengggunakan Model Hibrida ARIMA-ANFIS. Makalah Tugas Akhir. Jurusan Statistika FMIPA-ITS. Surabaya.
Munarsih E. (2011). Penerapan Model ARIMA Neural Network Hybrid untuk Peramalan Time Series. Thesis. S2 Matematika FMIPA Universitas Gadjah Mada. Yogyakarta.
Sutijo, B., Subanar, & Guritno, S. (2006). Pemilihan Hubungan Input Node pada Jaringan Syaraf Fungsi Radial Basis. Berkala MIPA 16(1):55-61.
Terui N & Van Dijk HK. (2002). Combined Forecast from Linear and nonlinear Time Series Model. International Journal of Forecasting, 18 (3):421-438.
Zhang G. 2003. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Journal Neurocomputing, 50:159-175.
Zheng F & Zhong S. 2011. Time series forecasting using a hybrid RBF neural network and AR model based on binomial smoothing. World Academy of Science. Eng Technol 75:1471- 1475.
DOI: http://dx.doi.org/10.30998/string.v2i1.1698
Refbacks
Copyright (c) 2017 STRING (Satuan Tulisan Riset dan Inovasi Teknologi)
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats