Implementasi Jaringan Syaraf Tiruan Backpropagation untuk Memprediksi Ketinggian Air (Studi Kasus: Sungai Ciliwung)

Rendi Prasetya(1*)

(1) Program Studi Teknik Informatika, Universitas Indraprasta PGRI
(*) Corresponding Author

Abstract


Prediction water level is still done using statistical methods. However, problems will arise if the research done on dynamic systems, as well as the water level prediction system. Artificial neural network technology can properly identify data patterns of a dynamic system. This study was conducted to predict the height of water in Bogor using rainfall data, evaporation and water level, observations in 2009-2010. The design of the prediction model using neural networks backpropagation with MATLAB software. Characteristics of artificial neural networks used are: 1 input layer with two neurons (precipitation and evaporation), one hidden layer and one output layer (water level), the value of the learning rate of 0.9; momentum of 0.1; 3 hidden neurons, error tolerance of 0.0001 and a maximum of 10000 epoch The experimental results by looping earned 10 times the average error was 10.93%, and it can be concluded that the system can properly predict the height of the water

Keywords


artificial neural network, backpropagation, MATLAB

Full Text:

PDF (Indonesian)

References


Haryanto, S.A.F., Ernawati, Diyah, P. (2015). Implementasi Jaringan Syaraf Tiruan Backpropagation untuk Memprediksi Cuaca (Studi Kasus: Kota Bengkulu). Jurnal Rekursif, Vol. 3 No.2, November 2015. ISSN: 2303-0755

Indrabayu, Nadjamuddin, H., M., Saleh Pallu, Andani A., Fikha, C.L., (2012). Prediksi Curah Hujan dengan Jaringan Syaraf Tiruan. Prosiding Teknik Elektro Fakultas Teknik Universitas Hasanudin. Vol. 6, Desember 2012. ISBN: 978-979-127255-0-6

Ma, D., Ding, N., Wang, J., Cui, J. (2010).Research on Flood Submergence AnalysisSystem Based on ArcEngine Component Library. Ministry of Construction P.R.ChinaScience & Technology Planning Project (2010-K9-24).

Maria, A. (2012). Penggunaan Jaringan Syaraf Tiruan Backpropagation untuk Seleksi Penerimaan Mahasiswa Baru Pada Jurusan Teknik Komputer di Politeknik Negeri Sriwijaya. Program Pascasarjana, Magister Sistem Informasi, Universitas Diponegoro: Semarang

Siang, J.J. (2005). Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan MATLAB. Yogyakarta: ANDI

Sutikno, Bekti, R., Susanti, P., Istriana. (2010). Prakiraan Cuaca Dengan Metode Autoregressive Integrated Moving Average, Neural Network, dan Adaptive Splines Threshold Autoregression di Stasiun Juanda Surabaya. Jurnal SAINS Dirgantara.

Wadey, M.P., Cope, S.N., Nicholls, R.J., McHugh, K. (2015). Coastal Flood Analysis and Visualisation for A SmallTown. Ocean & Coastal Management 116(2015) 237e247

Youngjoo, K., Jonggeol, P., Atsuhiro. Y., Kazuhiko. F. (2012). Estimation Of Flood Volume in Chao Phraya River Basin,Thailand, From Modis Images Couppledwith Flood Inundation Level. InternationalCentre for Water Hazard and Risk Management (ICHARM) under the auspicesof UNESCO, Public Works ResearchInstitute (PWRI), 978-1-4673-1159-5/12/$31.00 ©2012 IEEE.

Zheng, W. (2012). The Flood Monitoring Information System Framework Based onMulti-source Satellite Remote Sensing Data. International Conference on System Science and Engineering June 30 - July 2,2012, Dalian, China.




DOI: http://dx.doi.org/10.30998/string.v1i3.1558

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 STRING (Satuan Tulisan Riset dan Inovasi Teknologi)

 

STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats

Flag Counter