Analisis Sentimen Kepuasan Investasi Pada Masa Pandemi dengan Metode Support Vector Machine dan K-Nearest Neighbors

Nabila Cahyani(1), Fauziah Fauziah(2*)

(1) Universitas Nasional
(2) Universitas Nasional
(*) Corresponding Author

Abstract


Investment is an activity to invest assets in certain people or institutions in order to get profits for a certain period of time. Investment can not only be made for the short term, but also be used as saving for the future use. Investment has now become a trend since the pandemic started. Many people jump into this activity with the hope of getting very promising profits. Both teenagers and adults have tried to plunge into the investment activity. However, some people still don't understand how to invest properly, so that they must take is quite high risks that create a negative impact on the profits. During the current pandemic, it is worsened by the inflation on the value of the Composite Stock Price Index that can fluctuate along with various things. This study aims to review how the public responds in making investments during the current pandemic. The research uses the Support Vector Machine and K-Nearest Neighbors methods. Seeing the use of the Support Vector Machine and K-Nearest Neighbors methods, it can be concluded that SVM is better than KNN, with the SVM accuracy value of 96.84% and that of KNN of 95.74% with a accuracy difference of 1.10% between the two methods.


Keywords


Investment; K-Nearest Neighbor; Pandemic; Sentiment; Support Vector Machine

Full Text:

PDF

References


D. Valle-Cruz, V. Fernandez-Cortez, A. López-Chau, and R. Sandoval-Almazán, “Does Twitter Affect Stock Market Decisions? Financial Sentiment Analysis During Pandemics: A Comparative Study Of The H1n1 And The Covid-19 Periods” Cognitive Computation, Vol. 14, No. 1, pp. 372–387, January 2021

A. P. Firdaus, “Analisis Pengaruh Sentimen Investor Terhadap Return Saham Sektoral Bei Di Masa Pandemi Covid-19 “, Khazanah Intelektual Vol. 5 No. 2, pp. 1107–1127, Agustus 2021.

E. Bulut, S. Akbulut Bekar, And G. Çizgici Akyüz, “Media Coverage Related Investor Sentiment During The Covid-19 Pandemic” Ege Academic Review , pp. 357–372, 2021.

T. Mezghani, M. Boujelbène, And M. Elbayar, “Impact Of Covid?19 Pandemic On Risk Transmission Between Googling Investor’s Sentiment, The Chinese Stock And Bond Markets” China Financ Review International, Vol. 11, No. 3, pp. 322–348, June 2021.

B. Jiang, H. Zhu, J. Zhang, C. Yan, And R. Shen, “Investor Sentiment And Stock Returns During The Covid-19 Pandemic” frontiers In psychogy, Vol. 12, pp. 1–5, July 2021.

A. Suci, R. Tami, And W. Maharani, “Kecendrungan Sentimen Dengan Pendekatan Support Vector Machine Pada Komunitas Yang Berpengaruh Di Twitter”, E-Proceeding of Engineering, Vol. 7, No. 3, pp. 9822–9834, Desember 2020.

D. Muhidin And A. Wibowo, “Perbandingan Kinerja Algoritma Support Vector Machine Dan K-Nearest Neighbor Terhadap Analisis Sentimen Kebijakan New Normal,” String (Satuan Tulisan Riset Dan Inovasi Teknologi, Vol. 5, No. 2, pp. 153, Desember 2020.

F. Sodik And I. Kharisudin, “Analisis Sentimen Dengan SVM , Naive Bayes Dan KNN Untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 Pada Media Sosial Twitter,” Prisma, Vol. 4, pp. 628–634, 2021.

E. Dwi Nurindah Sari, “Analisis Sentimen Nasabah Pada Layanan Perbankan Menggunakan Metode Regresi Logistik Biner , Naïve Bayes Classifier ( NBC ), Dan Support Vector Machine ( SVM )”, Jurnal Sains Dan Seni ITS, Vol. 8, No. 2, pp. 177, 2019.

R. Kosasih And A. Alberto, “Analisis Sentimen Produk Permainan Menggunakan Metode TF-IDF Dan Algoritma K-Nearest Neighbor”, Jurnal Nasional Informatika dan Jaringan, Vol. 6, No.1, September 2021.

R. Tineges, A. Triayudi, And I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM)”, Jurnal Media Informatika Budidarma, Vol. 4, No. 3, pp. 650-658, Juli 2020.

M. I. Petiwi, A. Triayudi, And I. D. Sholihati, “Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes Dan Support Vector Machine”, Jurnal Media Informatika Budidarma, Vol. 6, No. 1, p. 542-550, Januari 2022,




DOI: http://dx.doi.org/10.30998/string.v7i2.13937

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Nabila Cahyani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats

Flag Counter