Analisis Sentimen Opini Masyarakat Terhadap Kuliner DKI Jakarta dengan Metode Naïve Baiyes dan Support Vector Machine
(1) Nasional University
(2) Universitas Nasional
(3) Universitas Nasional
(*) Corresponding Author
Abstract
Culinary matter is an integral part of people’s everyday lives, especially for those who like to taste a variety of flavors and uniqueness of different food. It is easier to find information about the culinary you want to try through sites and social media. With the information, visitors can get an idea of the taste, price, and location of culinary treats. In the DKI Jakarta area, social media play an important role in providing data on people's assessments of culinary treats. Considering the use of social media platforms such as Instagram, Facebook, and Twitter, the researchers apply the methods of Naive Bayes and Support Vector Machine that later produce a result that can be used as a basis for assessing culinary treats in Jakarta. This research takes data from three sources, namely Twitter, Zomato and Quora. The data collection period for Twitter is from March 01, 2022-June 30, 2022, while for Zomato and Quora from September 2021 to June 2022, during which 2520 data are collected. The data will be then processed to draw a conclusion. The accuracy test on three sources show the accuracy score of Naïve Bayes is higher than that of the Support Vector Machine, with the accuracy of Naïve Bayes of 76.00% and that of the support vector machine of 74.00%, resulting in more positive responses than negative responses and indicating that culinary treats in Jakarta is considered good by the community.
Keywords
Full Text:
PDFReferences
R. Sari, “Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest Neighbor (K-Nn),” EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 10–17, 2020, doi: 10.31294/evolusi.v8i1.7371.
Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter,” J. Inf. Syst. Manag., vol. 3, no. 2, pp. 44–49, 2021, doi: 10.24076/joism.2021v3i2.558.
D. A. R. P. Gunawan Budi Prasetyo, Habibie Ed Dien, “Sentimen Analisis Terhadap Objek Wisata Alam Kota Malang Di Instagram Dan Facebook Menggunakan Metode Naive Bayes Dan Support Vector Machine,” Siap), p. 2020, 2020.
W. Parasati, F. A. Bachtiar, and N. Y. Setiawan, “Analisis Sentimen Berbasis Aspek pada Ulasan Pelanggan Restoran Bakso President Malang dengan Metode Naïve Bayes Classifier,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 4, no. 4, pp. 1090–1099, 2020, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7134
F. K. Sutrisno and K. M. Lhaksmana, “Analisis Sentimen Destinasi Wisata Kuliner di Twitter Menggunakan TF-IDF dan Complement Naïve Bayes pada Dataset Tidak Seimbang,” e-Proceeding Eng., vol. 8, no. 4, pp. 4115–4123, 2021.
S. A. Azzahra and A. Wibowo, “Analisis Sentimen Multi-Aspek Berbasis Konversi Ikon Emosi dengan Algoritme Naïve Bayes untuk Ulasan Wisata Kuliner Pada Web Tripadvisor,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, p. 737, 2020, doi: 10.25126/jtiik.2020731907.
I. G. C. Purnama, N. A. Sanjaya ER, and L. A. A. R. Putri, “Sentiment Analysis of Snack Review Using the Naïve Bayes Method,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 8, no. 3, p. 333, 2020, doi: 10.24843/jlk.2020.v08.i03.p16.
O. Somantri and D. Apriliani, “Opinion mining on culinary food customer satisfaction using naïve bayes based-on hybrid feature selection,” Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 1, pp. 468–475, 2019, doi: 10.11591/ijeecs.v15.i1.pp468-475.
A. Zumarniansyah and R. Pebrianto, “Twitter Sentiment Analysis of Post Natural Disasters Using Comparative Classification Algorithm Support Vector Machine and Naive Bayes,” J. Pilar Nusa Mandiri, Vol. 16, No. 2, pp. 169–174, 2020.
H. Syahputra, L. K. Basyar, and A. A. S. Tamba, “Setiment Analysis of Public Opinion on the Go-Jek Indonesia Through Twitter Using Algorithm Support Vector Machine,” J. Phys. Conf. Ser., vol. 1462, no. 1, 2020, doi: 10.1088/1742-6596/1462/1/012063.
DOI: http://dx.doi.org/10.30998/string.v7i3.13931
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Muhammad Fadel Sasongko
This work is licensed under a Creative Commons Attribution 4.0 International License.
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats