Metode Algoritma Convolutional Neural Network pada Klasifikasi Penyakit Tanaman Cabai

Dwi Suci Anggraeni(1*), Arif Widayana(2), Putri Dwi Rahayu(3), Chaerur Rozikin(4)

(1) 
(2) Universitas Singaperbangsa Karawang
(3) Universitas Singaperbangsa Karawang
(4) Universitas Singaperbangsa Karawang
(*) Corresponding Author

Abstract


In Indonesia, chili is a very important vegetable, which is consumed for domestic trade as well as for export. In addition to containing nutrients, chili also has a high economic value. Due to the increasing quality of chili as a commodity that often experiences the highest price fluctuations, it is necessary to classify chili plants to maintain the quality of chili harvests so that chili production can increase. This research is a classification of chili plant diseases using the convolutional neural network method, with several design and implementation processes. The purpose of this research is to assist in classifying the quality of chili plants in the hope of maintaining the quality of chili in the market and preventing the price spikes. Classification of chili plant diseases using a convolutional neural network based on train data and test data. To form a model in the classification, training data needs to be carried out and there are 3 categories used for the classification model, namely yellowish, leaf curl, and healthy. Training data compatible with computers in single GPU mode and validation data are not included in the training process as well as interpreter review materials to determine the type of chili plant object that is difficult to distinguish significantly, namely the results of the classification label that appears on the network.


Keywords


Convolutional neural network; classification; chili plant.

Full Text:

PDF

References


H. D. A. Hamid and Nurul Hidayat, “Diagnosis Penyakit Tanaman Cabai Menggunakan Metode Modified K- Nearest Neighbor ( MKNN ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2881–2886, 2019.

D. O. Nusantara, S. wisnu Pamungkas, N. rosid Syaifudin, L. wijaya Kusuma, and J. Fakri, “Sistem pakar analisa penyakit pada tanaman cabai merah menggunakan metode backward chaining,” Semin. Nas. Teknol. Inf. dan Multimed., no. 1, pp. 73–78, 2017.

A. Tsany and R. Dzaky, “Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network,” vol. 8, no. 2, pp. 3039–3055, 2021.

I. W. Hasanain and A. Rizal, “Klasifikasi Suara Paru-Paru Menggunakan Convolutional Neural Network (CNN),” e-Proceeding Eng., vol. 8, no. 2, pp. 3218–3223, 2021.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.

Y. Achmad, R. C. Wihandika, and C. Dewi, “Klasifikasi emosi berdasarkan ciri wajah wenggunakan convolutional neural network,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, pp. 10595–10604, 2019.

A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,” Format J. Ilm. Tek. Inform., vol. 8, no. 2, p. 138, 2020, doi: 10.22441/format.2019.v8.i2.007.

R. Abdulhakim, Carudin, and B. Arif Dermawan, “Analisis dan Penerapan Algoritma Convolutional Neural Network untuk Klasifikasi Kendaraan Prioritas,” J. Sains dan Inform., vol. 7, no. 2, pp. 135–144, 2021, doi: 10.34128/jsi.v7i2.335.

M. Saputra, M. P. Kurniawan, and M. T. Informatika, “Identifikasi Mutu Biji Kopi Arabika Berdasarkan Cacat,” J. Teknol. Inf. dan Komun., vol. 10, no. 1, pp. 27–35, 2020.

K. N. Sami, Z. M. A. Amin, and R. Hassan, “Waste Management Using Machine Learning and Deep Learning Algorithms,” Int. J. Perceptive Cogn. Comput., vol. 6, no. 2, pp. 97–106, 2020, doi: 10.31436/ijpcc.v6i2.165.

N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,” J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020, doi: 10.20884/1.jutif.2020.1.2.18.

R. Mehindra Prasmatio, B. Rahmat, and I. Yuniar, “Algoritma Convolutional Neural Network,” J. Inform. dan Sist. Inf., vol. 1, no. 2, pp. 510–521, 2020.

M. H. Romario, E. Ihsanto, and T. M. Kadarina, “Sistem Hitung dan Klasifikasi Objek dengan Metode Convolutional Neural Network,” J. Teknol. Elektro, vol. 11, no. 2, p. 108, 2020, doi: 10.22441/jte.2020.v11i2.007.

A. Jakaria, S. Mu’minah, D. Riana, and S. Hadianti, “Klasifikasi Varietas Buah Kiwi dengan Metode Convolutional Neural Networks Menggunakan Keras,” J. Media Inform. Budidarma, vol. 5, no. 4, pp. 1309–1315, 2021, doi: 10.30865/mib.v5i4.3166.

E. N. Arrofiqoh and Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi,” Geomatika, vol. 24, no. 2, pp. 61–68, 2018.




DOI: http://dx.doi.org/10.30998/string.v7i1.13304

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Dwi Suci Anggraeni

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats

Flag Counter