KLASTERISASI BANK-BANK UNIT PENYALUR KUR BERBASIS KINERJA KEUANGAN MENGGUNAKAN PRINCIPAL COMPONENT BIPLOT
(1) Universitas Persada Indonesia YAI Jakarta
(*) Corresponding Author
Abstract
This study aims to determine each BRI unit bank's group or relative position that distributes people’s business credit (KUR) internally based on their financial performance. This grouping is useful as a mapping of BRI unit banks as a reference for determining targets and competitive advantages. Bank units are grouped based on the similarity of characteristics between objects and the diversity of variables using a biplot principal component analysis. The location of research was carried out at BRI unit banks in Pati Regency, Central Java. Saturated sampling means that the population used in this study is 35 BRI unit banks in Pati Regency. The result of this research is that four groups/clusters are formed. The diversity between the four clusters is high, while the diversity within the clusters is small or homogeneous. Unit banks in each group have fairly close similarities compared to unit banks in other groups. None of the bank units in Cluster I and II dominate the performance parameters. Cluster III consists of 9 bank units, namely Dukuhseti (DS), Karaban (KB), Sukolilo (SL), Tambakromo (TK), Kayen (KY), Jaken (JK), Juwono II (J2), Pati 2 (PK2) and Kajar (KJ). In cluster 3, unit banks dominate the parameters of variables such as KUR disbursed, number of customers, and income. Meanwhile, unit banks in cluster IV dominate the cost and NPL parameters. The implication of this clustering is that unit banks in cluster 3 have good performance as a model for other unit banks. Meanwhile, banks that are included in cluster 4 should be more careful in attracting customers so that bad credit does not occur
Keywords
Full Text:
PDF (Indonesian)References
Anuraga, G. (2015). Analisis Biplot Untuk Pemetaan Karakteristik Kemiskinan Pada Kabupaten/Kota Di Jawa Timur. J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika, 7(1). https://doi.org/10.36456/jstat.vol7.no1.a187
Ariawan, I. M. A., Kencana, I. P. E. N., & Suciptawati, N. L. P. (2013). Komparasi Analisis Gerombol (Cluster) Dan Biplot Dalam Pengelompokan. E-Jurnal Matematika, 2(4), 17. https://doi.org/10.24843/MTK.2013.v02.i04.p053
Farida, F., Osman, I. R., Lim, A. K., & Wahyuni, N. (2018). The Efficiency of Formal Microfinance in Indonesia: Using Data Envelopment Analysis Application. Iranian Economic Review, 22(3), 791–844.
Farida, F., Siregar, H., & Nuryartono, N. (2016). An Impact Estimator Using Propensity Score Matching: People’s Business Credit Program to Micro Entrepreneurs in Indonesia. Iranian Economic Review, 20(4), 599–615.
Farida, F., Wahyuni, N., & Zulfida, I. (2019). Keterkaitan Efisiensi Kredit Usaha Rakyat (KUR) dengan Topografi Wilayah di Kabupaten Pati, Provinsi Jawa Tengah. Journal of Regional and Rural Development Planning, 3(2), 117–130. https://doi.org/10.29244/jp2wd.2019.3.2.117-130
Ginanjar, I., Pasaribu, U. S., & Indratno, S. W. (2017). A measure for objects clustering in principal component analysis biplot: A case study in inter-city buses maintenance cost data. 020016. https://doi.org/10.1063/1.4979432
Gunarto, M., & Syarif, M. A. (2014). Penggunaan Analisis Biplot Pada Pemetaan Perguruan Tinggi Swasta Di Kota Palembang. Forum Manajemen Indonesia 6 Medan 2014.
Hartono, A. (2015). PENGUKURAN KINERJA KEUANGAN DENGAN METODE EAGLES (Studi Kasus Pada bank BUMN yang Listing di BEI Tahun 2011-2013). Jurnal Ekulilibrium, 10(2), 55–68.
Islami, R. L., & Sihombing, P. R. (2021). Application Biplot and K-Medians Clustering to Group Export Destination Countries of Indonesia’s Product. Advance Sustainable Science, Engineering and Technology, 3(1), 0210105. https://doi.org/10.26877/asset.v3i1.8451
John, C., Omekara, C. O., & Okwara, G. (2019). The Principal Component Analysis Biplot Predictions versus the Ordinary Least Squares Regression Predictions: The Anthropometric Case Study. Asian Journal of Probability and Statistics, 3(4), 1–10. https://doi.org/10.9734/ajpas/2019/v3i430098
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
Kudadiri, M. S., Silvianti, P., & Afendi, F. M. (2022). Pengelompokan Provinsi Berdasarkan Capaian Indikator Kesehatan Lingkungan Di Indonesia Tahun 2020. Xplore: Journal of Statistics, 11(3), 191–202. https://doi.org/10.29244/xplore.v11i3.879
Leleury, Z. A., & Wokanubun, A. E. (2015). Analisis Biplot Pada Pemetaan Karakteristik Kemiskinan Di Provinsi Maluku. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 9(1), 21–31. https://doi.org/10.30598/barekengvol9iss1pp21-31
Mattjik, A. A., & Sumertajaya, I. M. (2011). Sidik Peubah Ganda. IPB Press.
Pogalin, R., Mongi, C., & Nainggolan, N. (2014). Analisis Biplot Untuk Pemetaan Kabupaten/Kota di Provinsi Sulawesi Utara Berdasarkan Beberapa Variabel Pendidikan. JURNAL MIPA, 14(2), 146. https://doi.org/10.35799/jis.14.2.2014.6269
Prasaja, M. (2018). Determinan Kinerja Keuangan Perbankan Syariah. KINERJA, 15(2), 57–67.
Raden, A. L. N., & Pramaputri, D. D. (2021). Analisis Biplot Atas Kinerja Pemerintah Dalam Penanganan Stunting Di Indonesia. Jurnal Anggaran dan Keuangan Negara Indonesia (AKURASI), 3(1), 116–135. https://doi.org/10.33827/akurasi2021.vol3.iss1.art101
Rifkhatussa’diyah, E. F., Yasin, H., & Rusgiyono, A. (2014). Analisis Biplot Komponen Utama Pada Bank Umum (Commercial Bank) Yang Beroperasi Di Jawa Tengah. JURNAL GAUSSIAN, 3(1), 61–70.
Riswan, R., & Kesuma, Y. F. (2014). Analisis Laporan Keuangan sebagai dasar dalam Penilaian Kinerja Keuangan PT. Budi Satria Wahana Motor. Jurnal Akuntansi dan Keuangan, 5(1). https://doi.org/10.36448/jak.v5i1.449
Sari, L., & Sihombing, P. R. (2021). Principal Component Analysis Biplot Global Competitiveness Index Asean Countries. Jurnal Matematika Murni Dan Terapan Epsilon, 14(2), 93. https://doi.org/10.20527/epsilon.v14i2.2967
Saumi, T. F., & Panudju, A. T. (2020). Analisis Korespondensi Ordinal Untuk Mengevaluasi Tingkat Kepuasan Konsumen. STATMAT : JURNAL STATISTIKA DAN MATEMATIKA, 2(1), 94. https://doi.org/10.32493/sm.v2i1.4209
Wedhananda, I. N. P., Yudiaatmaja, F., & Suwendra, I. W. (2020). Pengaruh Dana Pihak Ketiga Dan Penyaluran Kredit Terhadap Pendapatan Studi Kasus Pada Perusahaan Sub Sektor Bank Yang Terdaftar Di Bursa Efek Indonesia. e-Journal Universitas Pendidikan Ganesha Jurusan Manajemen, 8, 112–120.
Widia, E., & Octafia, S. M. (2022). Eksistensi Umkm Perempuan Di Masa Krisis: Kajian Tantangan Dan Peluang Di Koto Tangah Kota Padang. Journal of Applied Business and Economic, 9(2), 111–126.
DOI: http://dx.doi.org/10.30998/jabe.v9i3.16504
Refbacks
- There are currently no refbacks.
View My Stats
Alamat:Kampus B | Jl. Raya Kampung Gedong
Phone: +62 (021) 7818718 – 78835283
Work Hours: 09.00 AM – 08.00 PM
JABE (Journal of Applied Business and Economic) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.