Penerapan Metode Machine Learning untuk Prediksi Nasabah Potensial menggunakan Algoritma Klasifikasi Naïve Bayes

Devi Fitrianah(1*), Saruni Dwiasnati(2), Hanny Hikmayanti H(3), Kiki Ahmad Baihaqi(4)

(1) Universitas Mercu Buana
(2) Universitas Mercu Buana
(3) Universitas Buana Perjuangan Karawang
(4) Universitas Buana Perjuangan Karawang
(*) Corresponding Author


Customers are people who trust the management of their money in a bank or other financial service party to be used in banking business operations, thereby expecting a return in the form of money for their savings. To reach information to increase company profits, a method is needed to be able to provide knowledge in supporting the data that the company has. The model can be obtained by using predictive data processing of customer data that is categorized as potential or not potential. Data processing can be done using Machine Learning, namely classification techniques. This technique will produce a churn prediction model for determining the category of customers who fall into the Potential or Not Potential category and find out what accuracy value will be generated by applying the classification technique using the Naïve Bayes Algorithm. The parameters used in this study are Gender, Age, Marital Status, Dependent, Occupation, Region, Information. The data used are 150 data from customers who have participated in the savings program to find out whether the customer is in the Potential or Non-Potential category. The accuracy results generated using this data are 86.17% of the tools used by Rapidminner.

Full Text:

PDF (Indonesian)


A. Fadli, “Konsep Data Minning,” Konsep Data Mining, pp. 1–9, 2003.

H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,” Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018.

C. Agustina, “Analisa Nasabah Potensial Tabungan Deposito Berjangka Menggunakan Teknik Klasifikasi Data Mining,” J. Teknol. Inf. dan Terap., vol. 5, no. 2, pp. 105–112, 2018.

S. Wahyuni, “Implementasi Rapidminer Dalam Menganalisa Data Mahasiswa Drop Out,” J. Abdi Ilmu, vol. 10, no. 2, pp. 1899–1902, 2018.

E. T. L. Kusrini, Algoritma data mining. 2009.

A. Jananto, “Algoritma Naive Bayes untuk Mencari Perkiraan Waktu Studi Mahasiswa,” Dinamik, vol. 18, no. 1, p. 242727, 2013.

P. Purnama and C. Supriyanto, “Deteksi Penyakit Diabetes Type II Dengan Naive Bayes Berbasis Particle Swarm Optimization,” J. Teknol. Inf., vol. 9, 2013.

S. Haryati, A. Sudarsono, and E. Suryana, “implementasi data mining untuk memprediksi masa studi mahasiswa menggunakan algoritma c4. 5 (studi kasus: universitas dehasen bengkulu),” J. Media Infotama, vol. 11, no. 2, 2015.

M. Bramer, Principles of data mining, vol. 180. Springer, 2007.

A. V. Pakpahan and H. Irawan, “Penerapan Algoritma Naive Bayes Untuk Menentukan Nasabah Potensial pada AJB BUMIPUTERA 1912,” J. Komput. Bisnis, vol. 10, no. 2, 2017.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


DOAJ faktor exacta Garuda Ristekdikti isjd sinta isjd pkp index

isjd Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

stats View Faktor Exacta Stats

pkp index