IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CNN UNTUK SISTEM PENGENALAN WAJAH

Noviana Dewi(1*), Fiqih Ismawan(2)

(1) Universitas Budi Luhur
(2) Universitas Indraprasta PGRI
(*) Corresponding Author

Abstract


Face recognition system is generally divided into two stages, face detection system, which is a pre-processing step followed by a facial recognition system. This step will quickly be done by humans but it takes a long time for the computer. This ability of humans is what researchers want to duplicate in the last few years as biometric technology in computer vision to create a model of face recognition in computer. Deep learning becomes a spotlight in developing machine learning, the reason because deep learning has reached an extraordinary result in computer vision. Based on that, the author came up with an idea to create a face recognition system by implementing deep learning using the CNN method and applying library open face. The result of this research is applying deep learning with the CNN method to classification process that resulting percentage of precision of 96%, recall percentage of 100%, and accuracy percentage of 99.8%.

Full Text:

PDF (Indonesian)

References


A. Santoso and G. Ariyanto, “Implementasi Deep Learning Berbasis Keras Untuk Pengenalan Wajah,” Emit. J. Tek. Elektro, vol. 18, no. 01, pp. 15–21, 2018, doi: 10.23917/emitor.v18i01.6235.

D. L. Z. Astuti and Samsuryadi, “Kajian Pengenalan Ekspresi Wajah menggunakan Metode PCA dan CNN,” Annu. Res. Semin. Fak. Ilmu Komput., vol. 4, no. 1, pp. 293–297, 2018.

A. P. Putera and P. N. Primandari, “Rancang Bangun Aplikasi Absensi Online Berbasis Android Menggunakan Metode Deep Learning Pada PT . Pelabuhan Indonesia III ( Persero ),” 2020.

M. Arsal, B. Agus Wardijono, and D. Anggraini, “Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 1, pp. 55–63, 2020, doi: 10.25077/teknosi.v6i1.2020.55-63.

Y. Achmad, R. C. Wihandika, and C. Dewi, “Klasifikasi emosi berdasarkan ciri wajah wenggunakan convolutional neural network,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, pp. 10595–10604, 2019.

S. Meenakshi, M. Siva Jothi, and D. Murugan, “Face recognition using deep neural network across variationsin pose and illumination,” Int. J. Recent Technol. Eng., vol. 8, no. 1 Special Issue4, pp. 289–292, 2019.

M. R. Muliawan, B. Irawan, and Y. Brianorman, “Implementasi Pengenalan Wajah Dengan Metode Eigenface Pada Sistem Absensi,” J. Coding, Sist. Komput. Untan, vol. 03, no. 1, pp. 41–50, 2015.

A. Kishore, “Designing Deep Learning Neural Networks using Caffe,” no. January 2015, pp. 1–17, 2015, doi: 10.6084/M9.FIGSHARE.1546481.

J. Ali, “Rancang Bangun Sistem Pengenalan Wajah Dengan Metode Principal Component Analysis,” vol. 1, no. 2, pp. 48–60, 2016.

K. Santoso and G. P. Kusuma, “Face Recognition Using Modified OpenFace,” Procedia Comput. Sci., vol. 135, pp. 510–517, 2018, doi: 10.1016/j.procs.2018.08.203.

M. Athoillah, “Pengenalan Wajah Menggunakan SVM Multi Kernel dengan Pembelajaran yang Bertambah,” vol. 2, no. 2, pp. 84–91, 2017, doi: 10.15575/join.v2i2.109.

K. Mujib, A. Hidayatno, and T. Prakoso, “Pengenalan Wajah Menggunakan Local Binary Pattern (Lbp) Dan Support Vector Machine (Svm),” Transient, vol. 7, no. 1, p. 123, 2018, doi: 10.14710/transient.7.1.123-130.

M. F. Rahman, D. Alamsah, M. I. Darmawidjadja, and I. Nurma, “Klasifikasi Untuk Diagnosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network (RBNN),” J. Inform., vol. 11, no. 1, p. 36, 2017, doi: 10.26555/jifo.v11i1.a5452.




DOI: http://dx.doi.org/10.30998/faktorexacta.v14i1.8989

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index