Application of Ensemble Tree Algorithm for Installment Payment Arrears Prediction at Makmur Bersama Credit Union
(1) Universitas Krisnadwipayana
(2) Universitas Krisnadwipayana
(3) UNKRIS
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
S. Suthaharan, Machine Learning Models and Algorithms for Big Data Classification, vol. 36. Boston, MA: Springer US, 2016.
J. Boelaert and É. Ollion, “The Great Regression,” Rev. française Sociol., vol. Vol. 59, no. 3, pp. 475–506, Sep. 2018, doi: 10.3917/rfs.593.0475.
S. Mullainathan and J. Spiess, “Machine Learning: An Applied Econometric Approach,” J. Econ. Perspect., vol. 31, no. 2, pp. 87–106, May 2017, doi: 10.1257/jep.31.2.87.
L. Wu et al., “Robust fall detection in video surveillance based on weakly supervised learning,” Neural Networks, Apr. 2023, doi: 10.1016/j.neunet.2023.03.042.
H. H. Patel and P. Prajapati, “Study and Analysis of Decision Tree Based Classification Algorithms,” Int. J. Comput. Sci. Eng., vol. 6, no. 10, pp. 74–78, Oct. 2018, doi: 10.26438/ijcse/v6i10.7478.
L. Rokach and O. Maimon, “Top-Down Induction of Decision Trees Classifiers—A Survey,” IEEE Trans. Syst. Man Cybern. Part C (Applications Rev., vol. 35, no. 4, pp. 476–487, Nov. 2005, doi: 10.1109/TSMCC.2004.843247.
R. Yakkundimath, V. Jadhav, B. Anami, and N. Malvade, “Co-occurrence histogram based ensemble of classifiers for classification of cervical cancer cells,” J. Electron. Sci. Technol., vol. 20, no. 3, p. 100170, Sep. 2022, doi: 10.1016/j.jnlest.2022.100170.
W. Liu, H. Fan, and M. Xia, “Tree-based heterogeneous cascade ensemble model for credit scoring,” Int. J. Forecast., Aug. 2022, doi: 10.1016/j.ijforecast.2022.07.007.
T. Mildenberger, “Stephen Marsland: Machine learning. An algorithmic perspective,” Stat. Pap., vol. 55, no. 2, pp. 575–576, May 2014, doi: 10.1007/s00362-012-0471-0.
K. D. Pradnyana and R. A. Rahadi, “Loan Default Prediction in Microfinance Group Lending with Machine Learning,” Int. J. Bus. Technol. Manag., Jan. 2023, doi: 10.55057/ijbtm.2022.4.4.8.
K. Amzile and M. Habachi, “Assessment of Support Vector Machine performance for default prediction and credit rating,” Banks Bank Syst., vol. 17, no. 1, pp. 161–175, Apr. 2022, doi: 10.21511/bbs.17(1).2022.14.
P. Khansong, J. Karnjana, S. Laitrakun, and S. Usanavasin, “Customer Service Improvement based on Electricity Payment Behaviors Analysis using Data Mining Approaches,” in 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), 2020, pp. 114–117, doi: 10.1109/ECTIDAMTNCON48261.2020.9090699.
R. Natras, B. Soja, and M. Schmidt, “Ensemble Machine Learning of Random Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting,” Remote Sens., vol. 14, no. 15, p. 3547, Jul. 2022, doi: 10.3390/rs14153547.
A. Khumaidi, “Data Mining For Predicting The Amount Of Coffee Production Using CRISP-DM Method,” J. Techno Nusa Mandiri, vol. 17, no. 1, pp. 1–8, Feb. 2020, doi: 10.33480/techno.v17i1.1240.
Q. Qiu et al., “Development and validation of three machine-learning models for predicting multiple organ failure in moderately severe and severe acute pancreatitis,” BMC Gastroenterol., vol. 19, no. 1, p. 118, Dec. 2019, doi: 10.1186/s12876-019-1016-y.
J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf. Sci. (Ny)., vol. 507, pp. 772–794, Jan. 2020, doi: 10.1016/j.ins.2019.06.064.
DOI: http://dx.doi.org/10.30998/faktorexacta.v17i2.21819
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.