Penerapan Fuzzy Sugeno Orde Satu dalam Prediksi Pembelian
(1) Universitas Mercu Buana
(2) Universitas Mercu Buana
(3) Universitas Bina Sarana Informatika
(*) Corresponding Author
Abstract
Given the rapid advancement of information technology has a great influence in the fields of industry and services. This brings changes in competition between companies, so that company players must always create various techniques to survive. This study aims to assist SMEs in making purchases of the products they sell so that there is no excess stock. This research is calculated using the Fuzzy Sugeno algorithm with a system inference method that can be applied to determine the prediction of the number of purchases of goods. The prediction generated for the test data at week 30 is 60 pcs and this is less when compared to the real data, namely 70 pcs so that it can avoid overstock. Furthermore, the prediction results from the test data at week 21 to week 30 are tested to determine the error rate using the MAPE method, so that the result is 31.67%, and that means that the test is considered reasonable (reasonable).
Full Text:
PDF (Indonesian)References
N. K. Putri, A. S. Purwati, R. Ayu, S. Wulandari, and I. Suparlinah, “Tantangan Yang Dihadapi UMKM Di Indonesia Pada Era Asean-China Free Trade Area 2015,” J. Akunt., vol. 2, no. 1, pp. 607–611, 2015.
Y. Lisanti, D. Luhukay, Veronica, and V. Mariani, “The design of knowledge management system model for SME (Small and Medium Enterprise) (Phase 2-The pilot implementation in IT SMEs),” in 2014 2nd International Conference on Information and Communication Technology, ICoICT 2014, 2014, pp. 211–216, doi: 10.1109/ICoICT.2014.6914067.
R. Purwaningsih and P. Kusuma Damar, “ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KINERJA USAHA KECIL DAN MENENGAH (UKM) DENGAN METODE STRUCTURAL EQUATION MODELING (Studi kasus UKM berbasis Industri Kreatif Kota Semarang),” E-Journal Undip, vol. 1, no. 1, pp. 7–12, 2015.
W. Gunawan, “ERP System As A Inventory Control And Waste Elimination (Pt Vif Case Study),” Int. J. Comput. Trends Technol., vol. 67, no. 7, pp. 8–13, 2019.
Mutammimul Ula, “Implementasi Logika Fuzzy Dalam Optimasi Jumlah Pengadaan Barang Menggunakan Metode Tsukamoto ( Studi Kasus : Toko Kain My Text ),” J. ECOTIPE, vol. 1, no. 2 SPK, pp. 36–46, 2014.
S. Dwiasnati and Y. Devianto, “Utilization of Prediction Data for Prospective Decision Customers Insurance Using the Classification Method of C.45 and Naive Bayes Algorithms,” J. Phys. Conf. Ser., vol. 1179, no. 1, 2019, doi: 10.1088/1742-6596/1179/1/012023.
H. R. AH, “Fuzzy Inference System Dengan Metode Tsukamoto Sebagai Penunjang Keputusan Produksi (Studi Kasus : PT. Talkindo Selaksa Anugrah),” J. Sist. Inf., vol. 7, no. 1, pp. 753–764, 2015.
S. Pinontoan, I. A. Musdar, and Hasniati, “Perbandingan Metode Fuzzy Sugeno dengan Fuzzy Tsukamoto pada Sistem Prediksi Harga Smartphone Bekas Berbasis Android di Wilayah Makassar,” J. Ilmu Komput., pp. 34–42, 2019.
S. Hajar, M. Badawi, Y. D. Setiawan, M. Noor, and H. Siregar, “Prediksi Perhitungan Jumlah Produksi Tahu Mahanda dengan Teknik Fuzzy Sugeno,” J. Sains Komput. Inform., vol. 4, no. 1, pp. 210–219, 2020.
T. Limbong, P. Siagian, T. Gultom, and J. Simarmata, “Implementation of the sugeno fuzzy logic method in identifying the quality of coffee beans,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, 2020, doi: 10.1088/1757-899X/725/1/012134.
H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” J. Inform., vol. 7, no. 1, pp. 1–7, 2020, doi: 10.31311/ji.v7i1.6203.
A. M. A. K. Parewe and W. F. Mahmudy, “Seleksi Calon Karyawan menggunakan Metode Fuzzy Tsukamoto,” Semin. Nas. Teknol. Inf. dan Komun. (SENTIKA), Yogyakarta, vol. 2016, no. Sentika, pp. 18–19, 2016, doi: 10.13140/RG.2.1.4079.1448.
A. H. Agustin, G. K. Gandhiadi, and T. B. Oka, “Penerapan Metode Fuzzy Sugeno Untuk Menentukan Harga Jual Sepeda Motor Bekas,” E-Jurnal Mat., vol. 5, no. 4, pp. 176–182, 2016, doi: 10.24843/mtk.2016.v05.i04.p138.
DOI: http://dx.doi.org/10.30998/faktorexacta.v14i4.11268
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.