Deteksi Kelayuan Pada Bunga Mawar dengan Metode Transformasi Ruang Warna HSI Dan HSV
(1) 
(2) Universitas Nasional
(3) Universitas Nasional
(*) Corresponding Author
Abstract
The rose is a plant from the genus Rosa which has more than 100 species with various colors. In the process of selecting roses, you will find roses that are still fresh and wilted. With that, we can detect the wilting of the rose by applying the HSI and HSV methods to image processing applications, the data collection process, namely by making data preparations on the Kaggle dataset, then classifying and training the data using the HSI and HSV methods. Based on the classification results of a total of 820 images of rose images, a total of 757 images were tested using HSI and HSV. The values obtained were Range at HSI, H = 0–0.5, S = 0–1, and I = 0.5372549–1 in the Fresh category, while the category HSI wilt, H = 0–0.5, S = 0-1, I = 0.5620915–1. The HSV range values are in the Fresh category H = 0–0.5, S = 0-1, V = 0-1, and the Wilt category H = 0-0.5, S = 0-1, V = 0-1. Furthermore, the success rate for testing roses with HSI reached 92.3% where the data read correctly 757 and read incorrectly 63 out of 820 sample data of roses, while testing on HSV the success rate reached 93.2% where the data read correctly 765 and read incorrectly 55 out of 820 rose flower sample data. Based on the above results, detection of wilting roses using the HSV color space transformation method is the best in data testing.
Keywords
Full Text:
PDFReferences
B. Yoga et al., “Segmentasi warna citra dengan deteksi warna hsv untuk mendeteksi objek,” J. Inform., vol. 6, no. 2, 2010.
Y. Permadi and Murinto, “Aplikasi Pengolahan Citra Untuk Identifikasi Kematangan Mentimun Berdasarkan Tekstur Kulit Buah Menggunakan Metode Ekstraksi Ciri Statistik,” J. Inform., vol. 9, no. 1, pp. 1028–1038, 2015.
F. Muwardi and A. Fadlil, “Sistem Pengenalan Bunga Berbasis Pengolahan Citra dan Pengklasifikasi Jarak,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 3, no. 2, p. 124, 2018, doi: 10.26555/jiteki.v3i2.7470.
H. Edha, S. H. Sitorus, U. Ristian, J. Rakayasa, and S. Komputer, “Penerapan Metode Transformasi Ruang Warna Hue Saturation Intensity (HSI) Untuk Mendeteksi Kematangan Buah Mangga Harum Manis,” J. Komput. dan Apl., vol. 08, no. 1, pp. 1–10, 2020.
N. Sularida, J. Y. Sari, I. Purwanti, and N. Purnama, “Identifikasi Tingkat Kematangan Buah Pisang Menggunakan Metode Ektraksi Ciri Statistik Pada Warna Kulit Buah,” ULTIMATICS, vol. X, no. 2, 2018, doi: 10.31937/ti.v10i2.1004.
P. Rianto and A. Harjoko, “Penentuan Kematangan Buah Salak Pondoh Di Pohon Berbasis Pengolahan Citra Digital,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 143, 2017, doi: 10.22146/ijccs.17416.
F. R. Lestari, J. Y. Sari, Sutardi, and I. Purwanti, “Deteksi Penyakit Tanaman Jeruk Siam Berdasarkan Citra Daun Menggunakan Segmentasi Warna RGB-HSV,” no. December, pp. 276–283, 2018.
E. Blotta, A. Bouchet, V. Ballarin, and J. Pastore, “Enhancement of medical images in HSI color space,” J. Phys. Conf. Ser., vol. 332, no. 1, 2011, doi: 10.1088/1742-6596/332/1/012041.
A. Qur’ania, L. Karlitasar, and S. Maryana, “Analisis Tektur Dan Ekstraksi Fitur Warna Untuk Klasifikasi Apel Berbasis Citra,” pp. 296–304, 2012.
A. N. T. RD. Kusumanto, “Pengolahan Citra Digital Untuk Mendeteksi Obyek Menggunakan Pengolahan Warna Model Normalisasi Rgb,” Semin. Nas. Teknol. Inf. Komun. Terap. 2011, 2011, doi: 10.1016/S0166-1116(08)71924-1.
A. K. Panggabean, A. Syahfaridzah, and N. A. Ardiningih, “Mendeteksi Objek Berdasarkan Warna Dengan Segmentasi Warna HSV Menggunakan Aplikasi Matlab,” METHOMIKA J. Manaj. Inform. Komputerisasi Akunt., vol. 4, no. 2, pp. 94–97, 2020.
Y. K. Arinda, M. A. Rahman, and D. Alamsyah, “Klasifikasi Jenis Bunga menggunakan SVM dengan Fitur HSV dan HOG,” Ijccs, no. x, pp. 1–12, 2018.
R. Pratama, A. F. Assagaf, and F. Tempola, “Deteksi Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Metode Transformasi Ruang Warna HIS,” JIKO (Jurnal Inform. dan Komputer), vol. 2, no. 2, pp. 81–86, 2019, doi: http://dx.doi.org/10.33387/jiko.
N. Arifin and I. S. Areni, “Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Metode HSV,” vol. 23, no. 2, pp. 113–116, 2019, doi: 10.25042/jpe.112019.03.
H. Risman, D. Nugroho, and Y. R. WU, “Penerapan Metode K-Nearest Neighbor Pada Aplikasi,” Jural TIKomSiN, vol. 3, no. 2, pp. 19–25, 2013.
N. K. S. Ningrum and T. Ellen, “Ekstraksi Warna Berdasarkan Rgb Untuk Menentukan Tingkat Kematangan Daun Tembakau,” Pros. SNATIF Ke -5 Tahun 2018, pp. 96–101, 2019.
DOI: http://dx.doi.org/10.30998/string.v5i3.8464
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Dede Wandi
This work is licensed under a Creative Commons Attribution 4.0 International License.
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats