Analisa Sentimen Indonesia Mengenai KRL Commuter Line Menggunakan Metode Naïve Bayes dan Support Vector Machine
(1) Universitas Indraprasta PGRI
(2) Universitas Indraprasta PGRI
(3) Universitas Indraprasta PGRI
(*) Corresponding Author
Abstract
This study analyzes the sentiment of Indonesian society towards KRL Commuter Line services using Naive Bayes and Support Vector Machine (SVM) methods. Data was collected from Twitter through an API and processed through a series of preprocessing steps, including the removal of special characters, URLs, and other irrelevant information. Lexicon-based labeling was performed to identify the sentiment as positive, negative, or neutral for each tweet. The Naive Bayes and SVM models were then trained and tested on the labeled data. The results indicate that both methods are effective in classifying sentiment; however, SVM outperforms Naive Bayes in terms of accuracy. These findings highlight the significant potential of both methods in sentiment analysis, with SVM being the more suitable choice for this particular case. This study is expected to contribute to the improvement of KRL Commuter Line services by providing insights into user sentiment, which can be used as a basis for service enhancement.
Keywords
Full Text:
PDFReferences
Prastyo, P. H., Ardiyanto, I., & Hidayat, R. (2020). A Review of Feature Selection Techniques in Sentiment Analysis Using Filter, Wrapper, or Hybrid Methods. 2020 6th International Conference on Science and Technology (ICST), 1, 1–6. https://doi.org/10.1109/ICST50505.2020.9732885
Ahmad, M., Aftab, S., Bashir, M. S., & Hameed, N. (2018). Sentiment Analysis using SVM: A Systematic Literature Review. International Journal of Advanced Computer Science and Applications, 9. https://api.semanticscholar.org/CorpusID:3695786S.
Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. WIREs Data Mining and Knowledge Discovery, 8(4), e1253. https://doi.org/https://doi.org/10.1002/widm.1253
Liu, B., & Zhang, L. (2012). A Survey of Opinion Mining and Sentiment Analysis. In C. C. Aggarwal & C. Zhai (Eds.), Mining Text Data (pp. 415–463). Springer US. https://doi.org/10.1007/978-1-4614-3223-4_13
Sahoo, C., Wankhade, M., & Singh, B. K. (2023). Sentiment analysis using deep learning techniques: a comprehensive review. International Journal of Multimedia Information Retrieval, 12(2), 41. https://doi.org/10.1007/s13735-023-00308-2
Verma, B., & Thakur, R. S. (2018). Sentiment Analysis Using Lexicon and Machine Learning-Based Approaches: A Survey. In B. Tiwari, V. Tiwari, K. C. Das, D. K. Mishra, & J. C. Bansal (Eds.), Proceedings of International Conference on Recent Advancement on Computer and Communication (pp. 441–447). Springer Singapore.
Kamila Nadia L. (n.d.). dibimbing.id - Memahami Opini Publik dengan Analisis Sentimen Media Sosial. Retrieved August 27, 2023, from https://dibimbing.id/blog/detail/memahami-opini-publik-dengan-analisis-sentimen-media-sosial
Diah Indarwati, K., & Februariyanti, H. (n.d.). Analisis Sentimen Terhadap Kualitas Pelayanan Aplikasi Go-Jek Menggunakan Metode Naive Bayes Classifier.
Nuri, A. (2022). Implementasi na"ive bayes dan support vector machine dengan lexicon based untuk analisis sentimen pada twitter. Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta.
Hilmiyah, F. (2017). Prediksi Kinerja Mahasiswa Menggunakan Support Vector Machine untuk Pengelola Program Studi di Perguruan Tinggi (Studi Kasus: Program Studi Magister Statistika ITS). Departemen Manajemen Teknologi Bidang Keahlian Manajemen Teknologi Informasi Fakultas Bisnis Dan Manajemen Teknologi Institut Teknologi Sepuluh Nopember Surabaya, 1–99.
Wongkar, M., & Angdresey, A. (2019). Sentiment Analysis Using Naive Bayes Algorithm Of The Data Crawler: Twitter. 2019 Fourth International Conference on Informatics and Computing (ICIC), 1–5.https://doi.org/10.1109/ICIC47613.2019.8985884
Chory, R. N., Nasrun, M., & Setianingsih, C. (2018). Sentiment Analysis on User Satisfaction Level of Mobile Data Services Using Support Vector Machine (SVM) Algorithm. 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), 194–200. https://doi.org/10.1109/IOTAIS.2018.8600884
DOI: http://dx.doi.org/10.30998/string.v9i3.28706
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Adrian Nathanael Kalalo, Een Juhriah, Akhmad Aris Tantowi

This work is licensed under a Creative Commons Attribution 4.0 International License.
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats