Prediksi Kelulusan Siswa dengan Metode Support Vector Machine (SVM) di SMK Adiluhur

Lukman Lukman(1*), Herlinda Herlinda(2)

(1) Universitas Indraprasta PGRI
(2) Universitas Indraprasta PGRI
(*) Corresponding Author

Abstract


Student graduation is an indicator of the success of the educational process which is influenced by several factors, such as grades, extracurricular activities, interpersonal, non-academic, parental support, cognitive abilities. Predictions of student graduation can provide valuable information for schools to identify students at risk of not graduating and provide appropriate intervention. This research aims to develop a prediction model for student graduation using the Support Vector Machine (SVM) method. The data used includes academic grades, extracurricular activities, socio-economic conditions, and other relevant factors. The SVM method was chosen because of its ability to find the optimal hyperplane that maximally separates data classes. The modeling process includes data cleaning, feature selection, SVM parameter optimization, and performance evaluation using metrics such as accuracy, precision and recall. The research results show that the SVM model developed is able to predict student graduation with an accuracy of 95.06%. Model analysis reveals the main factors that influence student graduation, in an effort to increase student graduation rates.

 


Keywords


SVM; Graduation; School

Full Text:

PDF

References


B. Y. A. Aziizu, “Tujuan Besar Pendidikan Adalah Tindakan,” Prosiding Penelitian dan Pengabdian kepada Masyarakat, vol. 2, no. 2, 2015, doi: 10.24198/jppm.v2i2.13540.

A. Darmawan, I. Yudhisari, A. Anwari, and M. Makruf, “Pola Prediksi Kelulusan Siswa Madrasah Aliyah Swasta dengan Support Vector Machine dan Random Forest,” Jurnal Minfo Polgan, vol. 12, no. 1, 2023, doi: 10.33395/jmp.v12i1.12388.

A. M. Shahiri, W. Husain, and N. A. Rashid, “A Review on Predicting Student’s Performance Using Data Mining Techniques,” in Procedia Computer Science, 2015. doi: 10.1016/j.procs.2015.12.157.

S. Vaheed, R. Pratap Singh, P. Nayak, and C. Mallikarjuna Rao, “Student’s Academic Performance Prediction Using Ensemble Methods Through Educational Data Mining,” in Smart Innovation, Systems and Technologies, 2022. doi: 10.1007/978-981-16-9669-5_20.

M. M. Elsaid Khoudier et al., “Prediction of student performance using machine learning techniques,” in 5th Novel Intelligent and Leading Emerging Sciences Conference, NILES 2023 - Proceedings, 2023. doi: 10.1109/NILES59815.2023.10296766.

G. Mestres et al., “Vascular Access Surgery can be Safely Performed in an Ambulatory Setting,” European Journal of Vascular and Endovascular Surgery, vol. 58, no. 6, 2019, doi: 10.1016/j.ejvs.2019.06.1131.

H. Prastiwi, Jeny Pricilia, and Errissya Rasywir, “Implementasi Data Mining Untuk Menentuksn Persediaan Stok Barang Di Mini Market Menggunakan Metode K-Means Clustering,” Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM), vol. 2, no. 1, 2022, doi: 10.33998/jakakom.2022.2.1.34.

T. R. Abdillah, “Analisis Komparasi Cycles X Render Dan Cycles Render Menggunakan Google Colab,” Jurnal TIKA, vol. 8, no. 1, 2023, doi: 10.51179/tika.v8i1.1937.

T. B. Putri, S. Saidah, B. Hidayat, F. Qothrunnada, and D. Darwindra, “Deteksi Emosi Berdasarkan Sinyal Suara Manusia Menggunakan Discrete Wavelet Transform (DWT) Dengan Klasifikasi Support Vector Machine (SVM),” Jurnal Ilmu Komputer dan Informatika, vol. 3, no. 1, 2023, doi: 10.54082/jiki.45.

I. I. Ridho and G. Mahalisa, “Analisis Klasifikasi Dataset Indeks Standar Pencemaran Udara (ISPU) Di Masa Pandemi Menggunakan Algoritma Support Vector Machine (SVM),” Technologia : Jurnal Ilmiah, vol. 14, no. 1, 2023, doi: 10.31602/tji.v14i1.8005.

B. A. Nugroho, A. K. A. Pradana, and E. Nurfarida, “Prediksi Waktu Kedatangan Pelanggan Servis Kendaraan Bermotor Berdasarkan Data Historis menggunakan Support Vector Machine,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 1, 2021, doi: 10.26418/jp.v7i1.42964.

S. Fachrurrazi and B. Burhanuddin, “Penggunaan Metode Support Vector Machine Untuk Mengklasifikasi dan Memprediksi Angkutan Udara Jenis Penerbangan Domestik dan Penerbangan Internasional Di Banda Aceh,” Sisfo: Jurnal Ilmiah Sistem Informasi, vol. 2, no. 2, Nov. 2018, doi: 10.29103/sisfo.v2i2.1008.

M. Siddiq and Y. Desnelita, “Prediksi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademis Pada Perguruan Tinggi,” Prosiding …, vol. 1, 2019.

A. Thariq, “Implementasi Market Basket Analysis Menggunakan Algoritma Apriori pada Data Penjualan Buku,” Jurnal Kolaboratif Sains, vol. 6, no. 3, 2023.

E. Etriyanti, “Perbandingan Tingkat Akurasi Metode KNN dan Decision Tree dalam Memprediksi Lama Studi Mahasiswa,” Jurnal Ilmiah Binary STMIK Bina Nusantara Jaya Lubuklinggau, vol. 3, no. 1, 2021, doi: 10.52303/jb.v3i1.40.




DOI: http://dx.doi.org/10.30998/string.v9i1.23355

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 lukman lukman

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats

Flag Counter