Analisis Kesadaran Masyarakat Terhadap Bahaya Internet Phishing Menggunakan K-Means Clustering
(1) STMIK AMIKOM Surakarta
(2) STMIK AMIKOM Surakarta
(3) STMIK AMIKOM Surakarta
(*) Corresponding Author
Abstract
Phishing is a form of cybercrime that tricks users with fake messages containing malicious links or attachments, causing financial loss, identity theft, or system damage. High security awareness is necessary to avoid phishing. This research aims to analyze public awareness of the dangers of phishing on the internet using the k-means clustering method. The data was collected through an online survey of 30 respondents from various backgrounds and processed using the k-means clustering algorithm to generate groups based on awareness levels. The revealed that the majority of respondents had moderate security awareness of phishing: 17% had high awareness, 57% moderate, and 26% low. Factors affecting the awareness include age, education, occupation, internet use frequency, and information sources. Cluster evaluation using Silhouette Coefficient indicated that grouping with 3 clusters (value 0.44) was the most effective, compared to 2 clusters (value 0.37) and 4 clusters (value 0.36). This research provides insight into the variation in security awareness and the importance of increasing digital literacy to protect the public from phishing.
Keywords
Full Text:
PDFReferences
L. Yana Siregar and M. Irwan Padli Nasution, “Perkembangan Teknologi Informasi Terhadap Peningkatan Bisnis Online,” HIRARKI J. Ilm. Manaj. dan Bisnis, vol. 2, no. 1, pp. 71–75, 2020.
P. P. A. P. Batmetan, John Reimon, Morisa F. Lumingkewas, Claudia Tumuyu, “Analisis Perilaku Keamanan Informasi Pengguna Sosmed Dikalangan Generasi Milenial,” Prodi Pendidik. Teknol. Inf. dan Komunikasi, Univ. Negeri Manad. Tondano. 95318, 2019.
APJII, “Hasil Survei Penetrasi dan Perilaku Pengguna Internet,” Asosiasi Penyelenggara Jasa Internet Indonesia, 2022. https://apjii.or.id/survei (accessed Feb. 07, 2023).
A. Muhariya, I. Riadi, and Y. Prayudi, “Cyberbullying Analysis on Instagram Using K-Means Clustering,” JUITA J. Inform., vol. 10, no. 2, p. 261, 2022, doi: 10.30595/juita.v10i2.14490.
I. Riadi, Herman, and I. A. Rafiq, “Mobile Forensic Investigation of Fake News Cases on Instagram Applications with Digital Forensics Research Workshop Framework,” Int. J. Artif. Intell. Res., vol. 6, no. 2, 2022, doi: 10.29099/ijair.v6i2.311.
D. Wahyudi, M. Niswar, A. Ais, and P. Alimuddin, “Website Phising Detection Application Using Support Vector Machine (Svm),” J. Inf. Technol. Its Util., vol. 5, no. 2, p. 2022, 2022.
B. P. Zen, R. A. G. Gultom, and A. H. S. Reksoprodjo, “Analisis Security Assessment Menggunakan Metode Penetration Testing dalam Menjaga Kapabilitas Keamanan Teknologi Informasi Pertahanan Negara,” J. Teknol. Penginderaan, vol. 2, no. 1, pp. 105–122, 2020.
A. S. Gulo, S. Lasmadi, and K. Nawawi, “Cyber Crime dalam Bentuk Phising Berdasarkan Undang-Undang Informasi dan Transaksi Elektronik,” PAMPAS J. Crim. Law, vol. 1, no. 2, pp. 68–81, 2021, doi: 10.22437/pampas.v1i2.9574.
M. Y. DM, Addermi, and J. Lim, “Kejahatan Phising dalam Dunia Cyber Crime dan Sistem Hukum di Indonesia,” J. Pendidik. dan Konseling, vol. 4, p. 8022, 2022.
A. Ramadhan, M. A. Alhafidh, and M. D. Firmansyah, “Penyebaran Link Phising Kuota Kemendikbud Terhadap Kesadaran Informasi Pribadi Di Kalangan Mahasiswa UNINUS,” Kampret J., vol. 1, no. 1, pp. 11–15, 2022, doi: 10.35335/kampret.v1i1.9.
V. F. Putra Y, “Modus Operandi Tindak Pidana Phising Menurut UU ITE,” Jurist-Diction, vol. 4, no. 6, p. 2525, 2021, doi: 10.20473/jd.v4i6.31857.
A. Safi and S. Singh, “A systematic literature review on phishing website detection techniques,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 2, pp. 590–611, 2023, doi: https://doi.org/10.1016/j.jksuci.2023.01.004.
Z. R. Alfy, A. D. Baihaqie, and Z. F. A’ini, “Analisis Cluster K-Means pada Indikator Indeks Pembangunan Teknologi, Informasi, dan Komunikasi,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 8, no. 2, pp. 183–188, 2023.
M. Habibi and P. W. Cahyo, “Clustering User Characteristics Based on the influence of Hashtags on the Instagram Platform,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 4, p. 399, 2019, doi: 10.22146/ijccs.50574.
S. Harifi, M. Khalilian, J. Mohammadzadeh, and S. Ebrahimnejad, “Using metaheuristic algorithms to improve k-means clustering: A comparative study,” Rev. d’Intelligence Artif., vol. 34, no. 3, pp. 297–305, 2020, doi: 10.18280/ria.340307.
B. Harahap, “Penerapan Algoritma K-Means Untuk Menentukan Bahan Bangunan Laris (Studi Kasus Pada UD. Toko Bangunan YD Indarung),” Reg. Dev. Ind. Heal. Sci. Technol. Art Life, pp. 394–403, 2019, [Online]. Available: https://ptki.ac.id/jurnal/index.php/readystar/article/view/82
DOI: http://dx.doi.org/10.30998/string.v9i2.22404
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Indrawan Ady Saputro, Lilik Sugiarto, Febrianta Surya Nugraha
This work is licensed under a Creative Commons Attribution 4.0 International License.
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats