Klasifikasi Mutu Fisik Tempe Menggunakan Metode Convolutional Neural Network (CNN)
(1) Universitas Negeri Medan
(2) Politeknik Teknologi Kimia Industri
(3) Politeknik Teknologi Kimia Industri
(4) Politeknik Teknologi Kimia Industri
(5) Politeknik Teknologi Kimia Industri
(*) Corresponding Author
Abstract
The quality of tempeh has until now been determined through direct physical observation. The results of observations frequently show less consistency due to human visual limitations. Image processing is an alternative used to determining the quality of tempeh from the image aspect. Image processing has capabilities that are more sensitive, precise, and objective than human vision. Convolutional Neural Network (CNN) is a deep learning model that is able to identify image objects in such a way as to determine the type of the object. In some cases, CNN algorithm is used to identify the condition of an object quality. This research aims to identify the quality of tempeh from the image aspect to ensure whether the tempeh can be classified as the tempeh having good condition or the one starting to decompose. The image of tempeh is primary data obtained directly from one of the traditional markets in Medan. The number of images that were successfully obtained was 262. The resulted classification model went through seven phases: data preparation, preprocessing, data augmentation, dataset splitting, building a classification model with the CNN algorithm with the ReLU activation function, model testing, and evaluation. The results show that the model generated from 80% of the data has an accuracy of 98.71% and a loss rate of 0.0433%. In conclusion, this study shows that the loss rate will stabilize at this rate after 50 epochs.
Keywords
Full Text:
PDFReferences
Pusido, Tempe: Persembahan Indonesia untuk Dunia. 2019.
F. Razie and L. Widawati, “Kombinasi Pengemasan Vakum Dan Ketebalan Kemasan Untuk Memperpanjang Umur Simpan Tempe,” AGRITEPA: Jurnal Ilmu dan Teknologi Pertanian, vol. 5, no. 1, 2019, doi: 10.37676/agritepa.v5i1.721.
E. Kristiningrum, D. Danar, A. Susanto, P. Penelitian, P. Standardisasi, and B. S. Nasional, “Kemampuan Produsen Tempe Kedelai dalam Menerapkan SNI 3144:2009 (Ellia Kristiningrum dan Danar Agus Susanto),” Journal Teknologi Pangan, vol. 2, no. 1, 2015.
A. S. Laksono, Marniza, and Y. Rosalina, “Karakteristik Mutu Tempe Kedelai Lokal Varietas Anjasmoro Dengan Variasi Lama Perebusan Dan Penggunaan Jenis Pengemas,” Jurnal Agroindustri, vol. 9, no. 1, 2019.
A. A. Permana, “Rancangan Aplikasi ‘Tegar’ Pendeteksi Tempe Segar,” Jurnal Teknik, vol. 8, no. 2, 2019, doi: 10.31000/jt.v8i2.2011.
A. A. Permana, R. Riadhi, and ..., “Prototipe aplikasi penentuan tingkat kesegaran tempe berbasis citra digital,” Prosiding Simposium Nasional Multidisiplin (SinaMu) 1, 2019.
M. Zainuri and D. P. Pamungkas, “Implementasi Metode Convolutional Neural Network (CNN) Untuk Klasifikasi Jenis Bunga Anggrek,” Seminar Nasional Inovasi Teknologi. 2020.
E. Oktafanda, “Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Informatika Ekonomi Bisnis, vol. 4, no. 3, 2022, doi: 10.37034/infeb.v4i3.143.
T. Winanda, Y. Yunus, and H. Hendrick, “Klasifikasi Kualitas Mutu Daun Gambir Ladang Rakyat Menggunakan Metode Convolutional Neural Network,” Jurnal Sistim Informasi dan Teknologi, vol. 3, no. 3, 2021, doi: 10.37034/jsisfotek.v3i3.156.
D. Haryadi, S. Hidayatul Yulianing Tyas, A. Kuncoro, F. Firdhan Pratama Putra, and A. Ariyanto, “Identifikasi Citra Kualitas Minyak Kelapa Sawit Berbasis Android Menggunakan Algoritma Convolutional Neural Network,” Jurnal Rekayasa Elektrika, vol. 18, no. 4, 2022, doi: 10.17529/jre.v18i4.28617.
Muh Zainal Altim, Faisal, Salmiah, Kasman, Andi Yudhistira, And Rita Amalia Syamsu, “Pengklasifikasi Beras Menggunakan Metode CNN (Convolutional Neural Network),” Jurnal INSTEK (Informatika Sains dan Teknologi), vol. 7, no. 1, 2022, doi: 10.24252/instek.v7i1.28922.
M. Saputra, K. Kusrini, and M. P. Kurniawan, “Identifikasi Mutu Bij Kopi Arabika Berdasarkan Cacat dengan Teknik Convolutional Neural Network,” Inspiration: Jurnal Teknologi Informasi dan Komunikasi, vol. 10, no. 1, 2020, doi: 10.35585/inspir.v10i1.2533.
I. M. K. Karo, A. Khosuri, and R. Setiawan, “Effects of Distance Measurement Methods in K-Nearest Neighbor Algorithm to Select Indonesia Smart Card Recipient,” in 2021 International Conference on Data Science and Its Applications, ICoDSA 2021, 2021. doi: 10.1109/ICoDSA53588.2021.9617476.
W. M. Pradnya D and A. P. Kusumaningtyas, “Analisis Pengaruh Data Augmentasi Pada Klasifikasi Bumbu Dapur Menggunakan Convolutional Neural Network,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, 2022, doi: 10.30865/mib.v6i4.4201.
DOI: http://dx.doi.org/10.30998/string.v8i2.17596
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Ichwanul Muslim Karo Karo, Justaman Arifin Karo Karo
This work is licensed under a Creative Commons Attribution 4.0 International License.
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats