Model Matematika Kanker Paru-paru Akibat Pengaruh Sisa Asap Rokok dan Pencegahannya

Roni Al Maududi(1*)

(1) Program Studi Informatika, Universitas Indraprasta PGRI
(*) Corresponding Author

Abstract


Lung cancer is one of the most common cancers that cause many death cases in the world. Cigarette smoke or secondhand smoke is one of the most important risk factors in the development of lung cancer.  In this study, a Mathematical model for lung cancer represented by a non-linear system of differential equation is used to model the dynamics of a population which includes smokers. The basic reproduction number ( ) from the model will be determined and then by looking at this , we can analyze the sensitivity of the system by observing the parameters that can significantly change the value of . Numerical simulation using realistic data toward the model’s parameters will be provided to illustrate the dynamics of this population. The result of this study is a Mathematical model which can explain the dynamics of development of lung cancer in a population as a consequence of the existence of smokers and secondhand smoke in that population and the relevant efforts as prevention.


Keywords


population dynamics, basic reproduction number

Full Text:

PDF (Indonesian)

References


A. Acevedo – Estefanía, Carlos, et al. (2000). A Mathematical Model for Lung Cancer: The Effects of Second-Hand Smoke and Education. BU-1525-M, Agustus 2000. 521 – 548.

American Association for Cancer Research (AACR). (2013). Diakses dari AACR website: http://www.aacr.org/AdvocacyPolicy/GovernmentAffairs/Documents/AACRStatement_TobaccoUseCancerPat

American Lung Association. (2009). Diakses dari website:

http://www.lung.org/lung-disease/lung-cancer/resources/facts-figures/lung-cancer-fact-sheet.html#1

Brauer, Fred and Carlos Castillo-Chavez. (2011). Mathematical Models in Population Biology and Epidemiology (2nd ed.). New York: Springer

Centers for Disease Control and Prevention. (2009). Diakses dari CDC website: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6347a4.htm?s_cid=mm6347a4_w.

Castillo-Garsow, Carlos, et al. (1997). Mathematical Models for the Dynamics of Tobacco Use, Recovery, and Relapse. BU-1505-M, Januari 1997. 17 – 44.

International Agency for Research on Cancer (IARC). (2012). Diakses dari IARC website: http://globocan.iarc.fr/Pages/fact_sheets_population.aspx

Jones, James Holland. (2007). Notes On . Departement of Anthropological Sciences, Stanford University.

Munir, Rinaldi. (2015). Metode Numerik. Edisi ke – 4. Bandung: Informatika

World Population Prospects – UN DESA – the United Nations. (2015). Diakses dari website: http://esa.un.org/unpd/wpp/Publications/Files/Key_Findings_WPP_2015.pdf, hal 5.




DOI: http://dx.doi.org/10.30998/string.v2i1.1734

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 STRING (Satuan Tulisan Riset dan Inovasi Teknologi)

 

STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats

Flag Counter