Klasifikasi Tutupan Lahan pada Citra Sentinel-2 Kabupaten Kuningan dengan NDVI dan Algoritme Random Forest

Dwi Marlina(1*)

(1) 
(*) Corresponding Author

Abstract


The current remote sensing technology has produced various advantages, one of which is land cover classification. This technique is effective in land cover monitoring because of its ability to provide spatial information on the surface of the earth quickly, broadly, precisely and easily. The vegetation index obtained based on remote sensing is a fairly simple and effective method for quantitative and qualitative evaluation of cover, strength, and vegetation growth dynamics. The vegetation index using reflections from vegetation that is commonly used to evaluate vegetation quality is the normalized difference vegetation index (NDVI). Land cover classification analysis is performed with NDVI and random forest algorithms. The random forest algorithm is one of the supervised machine learning algorithms which can be used in classifying pixels in land cover classification classes. This research is aimed at classifying land cover of Sentinel-2 satellite images using NDVI and random forest algorithms. The result of this research is that the NDVI value -0.3 – 0.91 and the random forest algorithm accuracy is 91.39%, and Kappa 0.88. In conclusion, it can be said that random forest algorithms is effective to perform land cover classification by using Sentinel-2 satellite images


Keywords


machine learning; NDVI; remote sensing; random forest; Sentinel-2

Full Text:

PDF

References


A. D. Kulkarni and B. Lowe, “Random Forest Algorithm for Land Cover Classification,” Int. J. Recent Innov. Trends Comput. Commun., vol. 4, no. 3, pp. 58–63, 2016.

S. H. Julfazri, Projo Danoedora, “Klasifikasi Tutupan Lahan Data Landsat-8 OLI Menggunakan Metode Random Forest,” vol. 03, 2021, [Online]. Available: https://journal.its.ac.id/index.php/jpji/article/view/266/104.

T. Zhang, J. Su, Z. Xu, Y. Luo, and J. Li, “Sentinel-2 satellite imagery for urban land cover classification by optimized random forest classifier,” Appl. Sci., vol. 11, no. 2, pp. 1–17, 2021, doi: 10.3390/app11020543.

R. M. Sampurno and A. Thoriq, “Klasifikasi Tutupan Lahan Menggunakan Citra Landsat 8 Operational Land Imager (Oli) Di Kabupaten Sumedang,” J. Teknotan, vol. 10, no. 2, pp. 61–70, 2016, doi: 10.24198/jt.vol10n2.9.

Y. Huang, Z. xin CHEN, T. YU, X. zhi HUANG, and X. fa GU, “Agricultural remote sensing big data: Management and applications,” J. Integr. Agric., vol. 17, no. 9, pp. 1915–1931, 2018, doi: 10.1016/S2095-3119(17)61859-8.

R. Awaliyan and Y. B. Sulistyoadi, “Klasifikasi Penutupan Lahan Pada Citra Satelit Sentinel-2a Dengan Metode Tree Algorithm,” ULIN J. Hutan Trop., vol. 2, no. 2, pp. 98–104, 2018, doi: 10.32522/u-jht.v2i2.1363.

C. Li, L. Zhou, and W. Xu, “Estimating aboveground biomass using sentinel-2 msi data and ensemble algorithms for grassland in the shengjin lake wetland, China,” Remote Sens., vol. 13, no. 8, 2021, doi: 10.3390/rs13081595.

E. S. Putri, A. Widiasari, R. A. Karim, L. Somantri, and R. Ridwana, “Pemanfaatan Citra Sentinel-2 Untuk Analisis Gunung Manglayang,” J. Jur. Pendidik. Geogr., vol. 9, no. 2, pp. 133–143, 2021.

J. P. Angerer, “Technologies, tools and methodologies for forage evaluation in grasslands and rangelands,” Natl. Feed Assessments, p. 165, 2012.

H. Fang and S. Liang, Leaf Area Index Models, no. January. Elsevier Inc., 2014.

esa, Sentinel-2 User Handbook, no. 1. 2015.

J. Xue and B. Su, “Significant remote sensing vegetation indices: A review of developments and applications,” J. Sensors, vol. 2017, 2017, doi: 10.1155/2017/1353691.

R. Awaliyan and Y. B. Sulistyoadi, “Klasifikasi Penutupan Lahan Pada Citra Satelit Sentinel-2a Dengan Metode Tree Algorithm,” ULIN J. Hutan Trop., vol. 2, no. 2, pp. 98–104, 2018, doi: 10.32522/ujht.v2i2.1363.

D. Kosasih, M. B. Saleh, and L. B. Prasetyo, “Interpretasi Visual dan Digital untuk Klasifikasi Tutupan Lahan di Kabupaten Kuningan, Jawa Barat,” J. Ilmu Pertan. Indones., vol. 24, no. 2, pp. 101–108, 2019.

A. T. Rizky Mulya Sampurno, “Klasifikasi Tutupan Lahan Menggunakan Citra Landsat 8 Operational Land Imager (OLI) Di Kabupaten Sumedang (Land Cover Classification using Landsat 8 Operational Land Imager (OLI) Data in Sumedang Regency),” J. Teknotan, vol. 10, no. 2, 2016.




DOI: http://dx.doi.org/10.30998/string.v7i1.12948

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Dwi Marlina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats

Flag Counter