Implementasi Algoritme C4.5 untuk Prediksi Penanaman Cabai Merah
(1) 
(2) University Singaperbangsa Karawang
(3) University Singaperbangsa Karawang
(*) Corresponding Author
Abstract
Chili has been the most widely grown plant in Indonesia because it can bear fruit and grow in the highlands and the lowlands. Every year the market demand for chili continues to increase, even the annual price of chili tends to increase as a result of reduced chili supply and less fulfilled market demand. Besides, the crop failure experienced by chili farmers cause inflation growth in 2020 as much as 0.31%, resulting from rising prices in the food sector, including the price of cayenne pepper and red chili. The fluctuations in chili prices are strongly influenced by weather, harvest season, trade policies and the accompanying momentum. According to the background, the purpose of this study is to predict chili planting using the C4.5 algorithm. First, the researchers collect weather and price data taken from DISPERINDAG, BMKG, use chili price data on the market as a dataset to be later preprocessed to eliminate missing values, data outliers and imbalance data and then make a model that can predict chili planting. The prediction results using the rule from the decision tree have an accuracy rate of 97.8% based on the calculation of the prediction using validation data as much as 95 data
Keywords
Full Text:
PDFReferences
A. Hamid, “(2020). AACI sebut kurangnya pasokan jadi penyebab kenaikan harga cabai merah. Industri Kontan. Retrieved from http://industri.kontan.co.id/news/aaci-sebut-kurangnya-pasokan-jadi-penyebab-kenaikan-harga-cabai-merah.
Harga cabai yang melambung diprediksi bertahan hingga akhir februari. Nasional Kontan. Retrieved from https://nasional.kontan.co.id/news/harga-cabai-yang-melambung-diprediksi-bertahan-hingga-akhir-februari
Suhariyanto, BPS: Inflasi Januari 0,39 persen dipengaruhi kenaikan harga cabai,” 03 Februari 2020. Bisnis Tempo. Retrieved from https://bisnis.tempo.co/read/1302831/bps-inflasi-januari-039-persen-dipengaruhi-kenaikan-harga-cabai.
M. Nukman Ridho, & Nur Edy S. (2020), Pengaruh perubahan iklim terhadap produktivitas tanaman cabai rawit (Capsicum frutescens L.) di Kabupaten Malang the effect of the climate change on cayenne pepper (Capsicum frutescens L.) productivities in Malang Regency. Jurnal Produksi Tanaman, 8(3), 304–314.
H. Imtiyaz, B. H. Prasetio, and N. Hidayat, “Sistem Pendukung Keputusan Budidaya Tanaman Cabai Berdasarkan Prediksi Curah Hujan,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 733–738, 2017.
Sumbar, Budidaya cabai. Sumbar Litbang Retrieved from. http://sumbar.litbang.pertanian.go.id
D. Rosdiana and A. H. Rismayana, “Prediksi waktu tanam cabai menggunakan algoritma c4.5,” SINTAK, pp. 436–442, 2018.
Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” J. Edik Inform., vol. 2, no. 2, pp. 213–219, 2017.
E. P. Cynthia and E. Ismanto, “Metode Decision Tree Algoritma C.45 Dalam Mengklasifikasi Data Penjualan Bisnis Gerai Makanan Cepat Saji,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 3, no. July, p. 1, 2018, doi: 10.30645/jurasik.v3i0.60.
Tim Pengendalian Inflasi Pusat (TPIP), Koordinasi pengendalian inflasi tahun 2020. Bank Indonesia. Retrieved from https://www.bi.go.id .https://www.bi.go.id/id/moneter/koordinasi-pengendalian-inflasi/highlight news/Pages/Analisis-Inflasi-Januari-2020.aspx.
DOI: http://dx.doi.org/10.30998/string.v6i2.10378
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Muhammad Syam Firdaus, Aji Primajaya Jaya, Asep Jamaludin Asep
This work is licensed under a Creative Commons Attribution 4.0 International License.
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats