Sistem Rekomendasi Musik dengan Metode Collaborative Filtering Berbasis Android
(1) Universitas Indraprasta PGRI
(2) Universitas Indraprasta PGRI
(*) Corresponding Author
Abstract
The recommendation system is a system that can suggest information based on the results of observation of users’ desires to users. In this study, the recommendation system can be implemented into an online music player application by displaying song recommendations so that the application looks more personal to its users. The research method used to design this music recommendation system is a collaborative filtering by which the music recommendations for users are determined. The system produces a pretty good prediction when viewed from the MAE (Mean Absolute Error) score of 0.09639423292263861 and RMSE (Root Mean Squared Error) of 0.024737713540837314, meaning that the smaller the evaluation result is or close to 0, the more accurate it will be. The results of the MAE and RMSE calculations show that the prediction error rate is very small, so that they can be used as a parameter for determining music recommendations according to users’ needs.
Keywords
Full Text:
PDFReferences
S. Yollis and M. Netti, “Spotify: Aplikasi Music Streaming untuk Generasi Milenial,” Jurnal Komunikasi, vol. 10, no. 1, pp. 1–16, 2018.
W. Budiharto, Machine learning dan computational intelligence. Yogyakarta: Andi, 2016.
A. I. Putra and R. R. Santika, “Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering,” Edumatic : Jurnal Pendidikan Informatika, vol. 4, no. 1, pp. 121–130, Jun. 2020, doi: 10.29408/edumatic.v4i1.2162.
Y. Setiawan, A. Nurwanto, and A. Erlansari, “Implementasi Item Based Collaborative Filtering Dalam Pemberian Rekomendasi Agenda Wisata Berbasis Android,” Jurnal Pseudocode, vol. 6, no. 1, 2019, [Online]. Available: www.ejournal.unib.ac.id/index.php/pseudocode
E. Erlangga and H. Sutrisno, “Sistem Rekomendasi Beauty Shop Berbasis Collaborative Filtering,” EXPERT, Jurnal Manajemen Sistem Informasi dan Teknologi , vol. 10, no. 2, pp. 47–52, Dec. 2020.
A. E. Wijaya and D. Alfian, “Sistem Rekomendasi Laptop Menggunakan Collaborative Filtering dan Content-Based Filtering,” Jurnal Computech & Bisnis, vol. 12, no. 1, pp. 11–27, 2018.
C. C. Aggarwal, Recommender Systems. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-29659-3.
J. Enterprise, Otodidak Pemrograman Python. Jakarta Pusat: PT Elex Media Komputindo, 2017.
S. Lubis, “Implementasi Application Programming Interface (API) Dalam Upaya Peningkatan Pengelolaan dan Pelayanan Informasi Publik Pada Kantor KPU Kabupaten Tapanuli Selatan,” Universitas Medan Area, Medan, 2017.
A. Satyaputra and M. E. Aritonang, Let’s Build Your Android Apps with Android Studio. Jakarta: PT Elex Media Komputindo, 2016.
DOI: http://dx.doi.org/10.30998/string.v7i1.10300
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Muhamad Veri Anggoro, Millati Izzatillah, Muhamad Aland Wahyu Andrian
This work is licensed under a Creative Commons Attribution 4.0 International License.
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats