Implementasi Metode K-Medoids Untuk Masalah Intrusion Detection System Menggunakan Bahasa Pemrograman Matlab
(1) 
(2) Gunadarma University
(*) Corresponding Author
Abstract
Full Text:
PDF (Indonesian)References
N. P. K. S. Kadam, S. B. Bagal, Y. S. Thakare and Sonawane, “Canberra Distance Metric Based Hyperline Segment Pattern Classifier Using Hybrid Approach of Fuzzy Logic and Neural Network,” 2014, pp. 28–30.
H. Moudni, M. Er-rouidi, H. Mouncif, and B. El Hadadi, “Fuzzy logic based intrusion detection system against black hole attack in mobile ad hoc networks,” Int. J. Commun. Networks Inf. Secur., vol. 10, no. 2, pp. 366–373, 2018.
Wu TM, Intrusion Detection Systems Information Assurance Tools Report Sixth Edition September 25, Sixth. Information Assurance Technology Analysis Center, 2018.
M. Moorthy and S. Sathiyabama, “Hybrid fuzzy based intrusion detection system for wireless local area networks,” Eur. J. Sci. Res., vol. 53, no. 3, pp. 431–446, 2011.
A. Shah, S. Clachar, M. Minimair, and D. Cook, “Building multiclass classification baselines for anomaly-based network intrusion detection systems,” 2020, doi: 10.1109/DSAA49011.2020.00102.
C. M. Ou, “Host-based Intrusion Detection Systems Inspired by Machine Learning of Agent-Based Artificial Immune Systems,” 2019, doi: 10.1109/INISTA.2019.8778269.
L. Kaufman and P. E. Rousseeuw, “Clustering by means of Medoids,” Statistical Data Analysis Based on the L1 Norm and Related Methods. 1987.
K. G. Soni and A. Patel, “Comparative Analysis of K-means and K-medoids Algorithm on IRIS Data,” 2017.
M. K. Siddiqui and S. Naahid, “Analysis of KDD CUP 99 Dataset using Clustering based Data Mining,” Int. J. Database Theory Appl., vol. 6, no. 5, pp. 23–34, 2013, doi: 10.14257/ijdta.2013.6.5.03.
S. Devaraju and S. Ramakrishnan, “Detection of Accuracy for Intrusion Detection System Using Neural Network Classifier,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 1, pp. 338–345, 2013.
B. Bansal, “International Journal of Advanced Research in Computer Science and Software Engineering Rule Based Intrusion Detection System to Identify Attacking Behaviour and Severity of Attacks,” vol. 5, no. 1, pp. 718–724, 2015.
A. Suri Talita and E. Prasetyo Wibowo, “Intrusion Detection Systems Data Classification by Possibilistic C-Means Method,” J. Eng. Appl. Sci., vol. 15, no. 5, pp. 1170–1174, 2019, doi: 10.36478/jeasci.2020.1170.1174.
DOI: http://dx.doi.org/10.30998/faktorexacta.v14i2.9429
Refbacks
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.