ANALISIS KLASIFIKASI POPULASI TERNAK KAMBING DAN DOMBA DENGAN MODEL CONVOLUTIONAL NEURAL NETWORK

Alusyanti Primawati(1*), Intan Mutia(2), Dwi Marlina(3)

(1) University of Indraprasta PGRI
(2) University of Indraprasta PGRI
(3) University of Indraprasta PGRI
(*) Corresponding Author

Abstract


The number of goat populations is increasing all over the world. Sheep and goats are economically potential for business development because they do not require large areas of land, relatively small investment in business capital, and are easy to market. However, the similarities between goats and sheep can make small breeders who are just starting out in business nervous. Therefore, in goats and sheep, an intensive and efficient Precision Livestock Farming system is required. To answer this problem, goat and sheep objects was studied out using the collaboration software programming R and Python which executed in RStudio editor and Anaconda3 with the Tensor flow package. The sample data of 40 images. The model obtained from the classification results uses 20 pictures of goats and 20 pictures of sheep for training and testing. The accuracy produced shows that the prediction of training data at epoch 70 and 100 has the right accuracy with the actual data. This reinforces that the model used is good (fit) to the training dataset, but when it is applied to the testing dataset, the prediction results are still close to perfect. Epoch 70 identifies there is 1 image of a Goat which is recognized as Lamb.

Full Text:

PDF

References


A. Argüello, “Trends in goat research, a review,” J. Appl. Anim. Res., vol. 39, no. 4, pp. 429–434, 2011.

A. Maesya and S. Rusdiana, “Prospek Pengembangan Usaha Ternak Kambing dan Memacu Peningkatan Ekonomi Peternak,” Agriekonomika, vol. 7, no. 2, p. 135, 2018.

dan Adiati, L. Praharani, and S. Rusdiana, “Prospek Dan Strategi Perdagangan Ternak Kambing Dalam Merebut Peluang Pasar Dunia,” Agriekonomika, vol. 3, no. 2, pp. 203–222, 2014.

N. Rasminati, “Grade Kambing Peranakan Ettawa pada Kondisi Wilayah yang Berbeda,” Sains Peternak., vol. 12, no. 1, p. 43, 2017.

Ditjen PKH and K. Pertanian, “Penuhi Protein Hewani, Kementan Tambah Jumlah Kambing Saanen,” 2020. [Online]. Available: https://ditjennak.pertanian.go.id/penuhi-protein-hewani-kementan-tambah-jumlah-kambing-saanen#. [Accessed: 29-May-2020].

I. Daskiran et al., “Goat production systems of Turkey: Nomadic to industrial,” Small Rumin. Res., vol. 163, no. October, pp. 15–20, 2018.

B. Winarso, “Prospek dan Kendala Pengembangan Agribisnis Ternak Kambing dan Domba di Indonesia,” pp. 246–264, 2010.

S. R. dan U. A. Broto Wibow, “Pemasaran Ternak Domba Di Pasar Hewan Palasari Kabupaten Indramayu,” Agriekonomika, vol. 5, pp. 85–93, 2016.

B. A. Kaufmann, C. G. Hülsebusch, and S. Krätli, Pastoral livestock systems, vol. 3. Elsevier, 2018.

C. Rojo-Gimeno, M. van der Voort, J. K. Niemi, L. Lauwers, A. R. Kristensen, and E. Wauters, “Assessment of the value of information of precision livestock farming: A conceptual framework,” NJAS - Wageningen J. Life Sci., vol. 90–91, no. November 2018, p. 100311, 2019.

P. O. Skobelev, E. V. Simonova, S. V. Smirnov, D. S. Budaev, G. Y. Voshchuk, and A. L. Morokov, “Development of a knowledge base in the ‘smart farming’ system for agricultural enterprise management,” Procedia Comput. Sci., vol. 150, pp. 154–161, 2019.

I. Sneessens, L. Sauvée, H. Randrianasolo-Rakotobe, and S. Ingrand, “A framework to assess the economic vulnerability of farming systems: Application to mixed crop-livestock systems,” Agric. Syst., vol. 176, no. August 2018, p. 102658, 2019.

M. Liang and X. Hu, “Recurrent convolutional neural network for object recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June-2015, no. Figure 1, pp. 3367–3375, 2015.

A. Santoso and G. Ariyanto, “Implementasi Deep Learning Berbasis Keras Untuk Pengenalan Wajah,” Emit. J. Tek. Elektro, vol. 18, no. 01, pp. 15–21, 2018.

M. Zufar and B. Setiyono, “Convolutional Neural Networks Untuk Pengenalan Wajah Secara Real-time,” J. Sains dan Seni ITS, vol. 5, no. 2, p. 128862, 2016.

M. Duan, K. Li, C. Yang, and K. Li, “A hybrid deep learning CNN–ELM for age and gender classification,” Neurocomputing, vol. 275, pp. 448–461, 2018.

and S. Z. L. Xuezhi Liang, Xiaobo Wang, Zhen Lei, Shengcai Liao, “Soft-Margin Softmax for Deep Classification,” in International Conference on Neural Information Processing, 2017, vol. 3, no. October, pp. 118–125.




DOI: http://dx.doi.org/10.30998/faktorexacta.v14i1.8734

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index