Analisis Sentimen Pengguna Marketplace Bukalapak dan Tokopedia di Twitter Menggunakan Machine Learning

Irwansyah Saputra(1*), RAHMAD SINGGIH AJI PAMBUDI(2), HANAFI EKO DARONO(3), FACHRI AMSURY(4), MUHAMMAD RIZKI FAHDIA(5), BENNI RAMADHAN(6), ANGGIE ARDIANSYAH(7)

(1) 
(2) STMIK Nusa Mandiri
(3) STMIK Nusa Mandiri
(4) STMIK Nusa Mandiri
(5) STMIK Nusa Mandiri
(6) STMIK Nusa Mandiri
(7) STMIK Nusa Mandiri
(*) Corresponding Author

Abstract


      A collection of tweets from Twitter users about Marketplace Bukalapak and Tokopedia can be used as a sentiment analysis. The data obtained is processed using data mining techniques, in which there is a process of mining the text, tokenize, transformation, classification, stem, etc. Then calculated into three different algorithms to be compared, the algorithm used is the Decision Tree, K-NN, and Naïve Bayes Classifier with the aim of finding the best accuracy. Rapidminer application is also used to facilitate writers in processing data. The highest results from this study are Decision Tree algorithm with 82% accuracy, 81.95% precision and 86% recall.

Full Text:

PDF (Indonesian)

References


A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau, “Sentiment analysis of Twitter data,” Assoc. Comput. Linguist., pp. 30–38, 2011 [Online]. Available: http://www.cs.columbia.edu/~julia/papers/Agarwaletal11.pdf

Priyadharsini.C and D. A. S. Thanamani, “An Overview of Knowledge Discovery Databaseand Data mining Techniques,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 2, no. 1, pp. 1571–1578, 2014 [Online]. Available: http://www.rroij.com/open-access/anoverview-of-knowledge-discovery-databaseand-data-miningtechniques.pdf

S. Al-Osaimi and M. Badruddin, “Sentiment Analysis Challenges of Informal Arabic Language,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 2, pp. 278–284, 2017 [Online]. Available: http://dx.doi.org/10.14569/IJACSA.2017.080237

M. A. Ibrahim and N. Salim, “Sentiment Analysis of Arabic Tweets: With Special Reference Restaurant Tweets,” Int. J. Comput. Sci. Trends Technol., vol. 4, no. 3, pp. 173–179, 2013 [Online]. Available: http://www.ijcstjournal.org/volume-4/issue-3/IJCST-V4I3P28.pdf

P. Tripathi, S. K. Vishwakarma, and A. Lala, “Sentiment Analysis of English Tweets Using Rapid Miner,” in 2015 International Conference on Computational Intelligence and Communication Networks (CICN), 2015, pp. 668–672 [Online]. Available: https://doi.org/10.1109/CICN.2015.137

M. Shoeb, J. A.- work, and undefined 2017, “Sentiment Analysis and Classification of Tweets Using Data Mining,” Irjet.Net, pp. 4–7, 2017 [Online]. Available: https://irjet.net/archives/V4/i12/IRJETV4I12267.pdf

A. Pak and P. Paroubek, “Twitter as a Corpus for Sentiment Analysis and Opinion Mining,” Proc. Seventh Conf. Int. Lang. Resour. Eval., pp 1320–1326, 2010 [Online]. Available: http://crowdsourcingclass.org/assignments/downloads/pak-paroubek.pdf

B. Pang and L. Lee, “Opinion Mining and Sentiment Analysis,” Found. Trends InformatioPang, B., Lee, L. (2006). Opin. Min. Sentim. Anal. Found. Trends Inf. Retrieval, 1(2), 91–231. doi10.1561/1500000001n Retr., vol. 1, no. 2, pp. 91–231, 2006 [Online]. Available: http://www.cs.cornell.edu/home/llee/omsa/omsa.pdf

M. Singh, “Sentiment Analysis and Similarity Evaluation for Heterogeneous-Domain Product Reviews,” Int. J. Comput. Appl., vol. 144, no. 2, pp. 16–19, Jun. 2016 [Online]. Available: http://www.ijcaonline.org/archives/volume144/number2/singh-2016ijca-910112.pdf

A. Bifet and E. Frank, “Sentiment Knowledge Discovery in Twitter Streaming Data,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6332 LNAI, 2010, pp. 1–15 [Online]. Available: http://link.springer.com/10.1007/978-3-642-16184-1_1

J. Isabella, “Analysis and evaluation of Feature selectors in opinion mining,” Indian J. Comput. Sci. Eng., vol. 3, no. 6, pp. 757–762, 2013 [Online]. Available: http://www.ijcse.com/docs/INDJCSE12-03-06033.pdf

T. O’Keefe and I. Koprinska, “Feature selection and weighting methods in sentiment analysis,” Australas. Doc. Comput. Symp., pp. 67–74, 2009 [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.5694& rep=rep1&type=pdf#page=77

K. Bhuvaneswari, R. Parimala, and A. Professor, “Sentiment Reviews Classification using Hybrid Feature Selection,” Int. J. Database Theory Appl., vol. 10, no. 7, pp. 1–12, Jul. 2017 [Online]. Available: http://dx.doi.org/10.14257/ijdta.2017.10.7.01

F. Laeeq and N. M. Tabrez, “Sentimental Classification of Social Media using Data Mining,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 5, p. pp 546-549, 2017 [Online]. Available: https://doi.org/10.26483/ijarcs.v8i5.3360

B. Liu, Web Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011 [Online]. Available: http://link.springer.com/10.1007/978-3-642-19460-3




DOI: http://dx.doi.org/10.30998/faktorexacta.v13i4.7074

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index