Analisis Sentimen Pengguna Marketplace Bukalapak dan Tokopedia di Twitter Menggunakan Machine Learning
(1) 
(2) STMIK Nusa Mandiri
(3) STMIK Nusa Mandiri
(4) STMIK Nusa Mandiri
(5) STMIK Nusa Mandiri
(6) STMIK Nusa Mandiri
(7) STMIK Nusa Mandiri
(*) Corresponding Author
Abstract
Full Text:
PDF (Indonesian)References
A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau, “Sentiment analysis of Twitter data,” Assoc. Comput. Linguist., pp. 30–38, 2011 [Online]. Available: http://www.cs.columbia.edu/~julia/papers/Agarwaletal11.pdf
Priyadharsini.C and D. A. S. Thanamani, “An Overview of Knowledge Discovery Databaseand Data mining Techniques,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 2, no. 1, pp. 1571–1578, 2014 [Online]. Available: http://www.rroij.com/open-access/anoverview-of-knowledge-discovery-databaseand-data-miningtechniques.pdf
S. Al-Osaimi and M. Badruddin, “Sentiment Analysis Challenges of Informal Arabic Language,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 2, pp. 278–284, 2017 [Online]. Available: http://dx.doi.org/10.14569/IJACSA.2017.080237
M. A. Ibrahim and N. Salim, “Sentiment Analysis of Arabic Tweets: With Special Reference Restaurant Tweets,” Int. J. Comput. Sci. Trends Technol., vol. 4, no. 3, pp. 173–179, 2013 [Online]. Available: http://www.ijcstjournal.org/volume-4/issue-3/IJCST-V4I3P28.pdf
P. Tripathi, S. K. Vishwakarma, and A. Lala, “Sentiment Analysis of English Tweets Using Rapid Miner,” in 2015 International Conference on Computational Intelligence and Communication Networks (CICN), 2015, pp. 668–672 [Online]. Available: https://doi.org/10.1109/CICN.2015.137
M. Shoeb, J. A.- work, and undefined 2017, “Sentiment Analysis and Classification of Tweets Using Data Mining,” Irjet.Net, pp. 4–7, 2017 [Online]. Available: https://irjet.net/archives/V4/i12/IRJETV4I12267.pdf
A. Pak and P. Paroubek, “Twitter as a Corpus for Sentiment Analysis and Opinion Mining,” Proc. Seventh Conf. Int. Lang. Resour. Eval., pp 1320–1326, 2010 [Online]. Available: http://crowdsourcingclass.org/assignments/downloads/pak-paroubek.pdf
B. Pang and L. Lee, “Opinion Mining and Sentiment Analysis,” Found. Trends InformatioPang, B., Lee, L. (2006). Opin. Min. Sentim. Anal. Found. Trends Inf. Retrieval, 1(2), 91–231. doi10.1561/1500000001n Retr., vol. 1, no. 2, pp. 91–231, 2006 [Online]. Available: http://www.cs.cornell.edu/home/llee/omsa/omsa.pdf
M. Singh, “Sentiment Analysis and Similarity Evaluation for Heterogeneous-Domain Product Reviews,” Int. J. Comput. Appl., vol. 144, no. 2, pp. 16–19, Jun. 2016 [Online]. Available: http://www.ijcaonline.org/archives/volume144/number2/singh-2016ijca-910112.pdf
A. Bifet and E. Frank, “Sentiment Knowledge Discovery in Twitter Streaming Data,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6332 LNAI, 2010, pp. 1–15 [Online]. Available: http://link.springer.com/10.1007/978-3-642-16184-1_1
J. Isabella, “Analysis and evaluation of Feature selectors in opinion mining,” Indian J. Comput. Sci. Eng., vol. 3, no. 6, pp. 757–762, 2013 [Online]. Available: http://www.ijcse.com/docs/INDJCSE12-03-06033.pdf
T. O’Keefe and I. Koprinska, “Feature selection and weighting methods in sentiment analysis,” Australas. Doc. Comput. Symp., pp. 67–74, 2009 [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.5694& rep=rep1&type=pdf#page=77
K. Bhuvaneswari, R. Parimala, and A. Professor, “Sentiment Reviews Classification using Hybrid Feature Selection,” Int. J. Database Theory Appl., vol. 10, no. 7, pp. 1–12, Jul. 2017 [Online]. Available: http://dx.doi.org/10.14257/ijdta.2017.10.7.01
F. Laeeq and N. M. Tabrez, “Sentimental Classification of Social Media using Data Mining,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 5, p. pp 546-549, 2017 [Online]. Available: https://doi.org/10.26483/ijarcs.v8i5.3360
B. Liu, Web Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011 [Online]. Available: http://link.springer.com/10.1007/978-3-642-19460-3
DOI: http://dx.doi.org/10.30998/faktorexacta.v13i4.7074
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.