Implementasi Graph Clustering Algorithm Modification Maximum Standard Deviation Reduction (MMSDR) dalam Clustering Provinsi di Indonesia Menurut Indikator Kesejahteraan Rakyat
(1) Universitas Indraprasta PGRI
(2) Universitas Indraprasta PGRI
(3) Universitas Indraprasta PGRI
(*) Corresponding Author
Abstract
The population of Indonesia from year to year has increased. The increase in population must also be accompanied by increased economic growth in Indonesia. The increase in economic growth in Indonesia is marked by the reduction in the number of poor people in Indonesia. In addition, the increase in economic growth is reflected in the equitable distribution of public income in the country. Even though there are still many Indonesian people who are not yet prosperous in economic terms. To overcome, it is necessary to have clustering and characteristics of 34 provinces in Indonesia by implementing the Modification Maximum Standard Deviation Reduction (MMSDR) graph clustering algorithm. The data used are indicators of public welfare in 2017 obtained from the Central Statistics Agency. There are 9 indicators of community welfare used in this research. There are four stages in the MMSDR algorithm namely the "MST", "Subdivide", "Biggest Stepping" and "Create Clusters" processes. The results of this study can be seen from the distance between the nodes or between one province and another province produced 22 clusters. From the cluster results obtained using the MMSDR algorithm on welfare data, there are many clusters formed with cluster members formed at most two nodes (province).
Keywords: MMSDR, Clustering, Welfare of People
Full Text:
PDFReferences
I. A. Riyadi, Sri Hartini, Zulhan R, Chairul A, Adwi H, Nia S, Putri L, “Indikator Kesejahteraan Rakyat Welfare Indicators 2017,” Badan Pus. Stat., pp. 170–175, 2018.
E. C. Sugiarto, “Pemerataan Kesejahteraan Rakyat,” Pemerataan Kesejahteraan Rakyat, no. Sekertariat Kabinet Republik Indonesia, Jakarta, Indonesia, 2017.
M. S. A. M. Sovia Dewi, Aliasuddin, “Peran Sektor Keuangan dalam Pengentasan Kemiskinan Di Indonesia,” vol. 2, no. 1, pp. 80–93, 2014.
J. Gaussian, “JURNAL GAUSSIAN Vol . 4 , No . 4 , Tahun 2015 Halaman,” vol. 4, no. 2006, pp. 875–884, 2015.
D. Prastiwi, K. A. Sugeng, and T. Siswantining, “Modification of MSDR algorithm and ITS implementation on graph clustering,” AIP Conf. Proc., vol. 1862, no. July, 2017.
K. Kamal, K. A. Sugeng, and T. Siswantining, “Implementation algorithm modification maximum standard deviation reduction in graph clustering using matrix complement as input,” AIP Conf. Proc., vol. 2023, 2018.
S. Wulandari, “Clustering Kecamatan di Kota Bandung Berdasarkan Indikator Jumlah Penduduk dengan Menggunakan Algoritma K-Means,” in Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK) 2020, 2020, pp. 128–132.
R. Rizaldi, A. Kurniawati, C. V. Angkoso, T. Informatika, and U. T. Madura, “Implementasi Metode Eucledian Distance untuk Rekomendasi Recomender System of Appareal Size in Virtual Fitting Room Based,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, pp. 129–137, 2018.
R. Fitriani and N. Rosmawanti, “Penerapan Algoritma Euclidean Distance Untuk Pemilihan Paket Internet Berdasarkan Wilayah,” Progresif, vol. 13, no. 1, pp. 1651–1662, 2017.
S. Wulandari and N. Dwitiyanti, “Analyze Clustering Province Based on Indicator of Social Welfare Using Self Organizing Maps (SOM) Clustering Algorithm,” in Brawijaya International Conference on Multidisciplinary Sciences and Technology 2020, 2020, pp. 118–124.
DOI: http://dx.doi.org/10.30998/faktorexacta.v13i2.5863
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
