PERBANDINGAN KINERJA ALGORITMA DATA MINING PREDIKSI PERSETUJUAN KARTU KREDIT

Ipin sugiyarto(1*)

(1) STMIK Nusa Mandiri
(*) Corresponding Author

Abstract


Credit analysis needs to identify and assess factors that can influence customers in credit returns. Accurate measurement and good management capability in dealing with credit risk is an effort to save the economic operations unit and is beneficial for a stable and healthy financial system. Failure to identify credit risk results in loss of income and extends credit risk to a bad type of threat to profitability. Data mining prediction techniques are used to determine credit risk. Using the Cross-Industry Standard Process for data mining CRISP-DM. This study has tested the model using a neural network using PCA feature selection and optimized with the PSO algorithm to predict credit card approval. Several experiments were conducted to see the best results. The results of this study prove the use of a single Neural Net method produces an accuracy of 80.33%. while the use of the hybrid PCA+NN+PSO method has been proven to increase accuracy to 82.67%. Likewise, the AUC NN value of 0.706 increased to 0.749 when the NN was optimized using PSO and using the PCA. This study implements and compares PCA-based SVM, L. Regression and NN algorithms and optimize PSO to improve accuracy in credit card approval predictions.


Full Text:

PDF (Indonesian)

References


I. Menarianti. 2015. Klasifikasi data mining dalam menentukan pemberian kredit bagi nasabah koperasi. Jurnal Ilmu Teknosains, Vol.1, No.1, pp. 1-10.

T. S. Lee, C. C. Chiu, C. J. Lu & I. F. Chen. 2002. Credit scoring using the hybird neural discriminant tehcnique. Expert Syst. Appl. Vol.23, No.3, pp. 245-254.

M. Pasha, M. Fatima, A. M. Dogar & F. Shahzad. 2017. Performance Comparison of data mining algorithms for the predictive accuracy of credit card defaulters. Int. J. Comput. Sci. Netw. Secur., Vol.17, No.3, pp. 178-183.

S. Akkoc. 2012. An empirical comparison of conventional technique, neural network and three stage hybird adaptive neuro fuzzy inference system (ANFIS) model for credit scoring analysis: the case of turkish credit card data. Eur. J. Oper. Res. Vol.222, No.1, pp. 168-178.

I. C. Yeh & C. Hui Lien. 2009. The comparison of data mining technique for predictive accuracy of probability of default of credit card client. Expert Syst. Appl., Vol.36, No.2 Part 1, pp. 2473-2480.

R. L. Angga Ginanjar Mabrur. 2012. Penerapan data mining untuk memprediksi program studi teknik informatika jurnal komputer dan informatika. J. Komput. Dan Inform., vol.1, pp. 53-57.

S. F. Putra, R. Pradina dan I. Hafidz. 2016. Feature selection pada dataset faktor kesiapan bencana pada provinsi di Indonesia menggunakan metode PCA (Princial Component Analysis). J. Tek. Its, vol.5, No.2, pp. 5-9.

Y. B. Wah & I. R. Ibrahim. Using data mining predictive models to classify credit card applicant. pp. 394-398.

S. H. F. Widi Setyoko, M. Hasbi & M. Di. 2016. Sistem pendukung keputusan prediksi kualitas kredit calon debitur menggunakan metode KNN. J. TIKomSiN, vol.4, pp. 61-68.

E. Ariswati. 2017. Penerapan K-Nearest Neighbor berbasis Genetic Algorithm untuk penentuan pemberian kredit. No.1, pp. 1-11.

S. Umair. (2014, 1 Nov). A comparative study of data mining process models (KDD, CRIPS-DM and SEMMA). IJISR, Vol.12, No.1, pp. 217-222.

Ronald L., Iman & W. J. Conover. 2012. A measure of top-down correlation. Technimetrics, Vol.29, No.3.

Yuxi. Gao. (2018). An improved hybird group intelligent algorithm based on artificial bee colony and particle swarm optimatizion. International Conf. On Virtual Reality and Intelligent System.

Vankatesh. Ajay & G. J. Shomona. 2016. Prediction of credit card defaulters: A comparative study on performance of classifiers. Int. J. of Comp. App., Vol.145, No.7.

Pohan. B. Achmad & Sensuse I. Dana. 2014. Optimasi artificial neural network menggunakan genetic algorithm untuk prediksi uji coba marshal pada campuran aspal beton. Journal Ilmiah Prodi. Magister Ilmu Komputer. STMIK Nusa Mandiri.

Sumber Dataset: https://archive.ics.edu/ml/machine-learning-database/00350/.

Sumber referensi buku: Budiharto, Widodo. (2016). Machine Learning & Computational Intelligence. ANDI, Yogyakarta.




DOI: http://dx.doi.org/10.30998/faktorexacta.v12i3.4310

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index