Perbandingan Kinerja Algoritma K-Nearest Neighbor, Naïve Bayes Classifier dan Support Vector Machine dalam Klasifikasi Tingkah Laku Bully pada Aplikasi Whatsapp

Irwansyah Saputra(1*), Didi Rosiyadi(2)

(1) STMIK Nusa Mandiri
(2) LIPI
(*) Corresponding Author

Abstract


WhatsApp is the most popular messaging application in Indonesia. This causes the emergence of cyberbullying behavior by its users. This study aims to classify WhatsApp chat to two classes, namely bully and not bully. The classification algorithms used are k-NN, NBC and SVM. The results show that the SVM algorithm is better at solving this case with an accuracy of 81.58%.


Full Text:

PDF (Indonesian)

References


Afiyati, R., Winarko, E., & Cherid, A. (2018). Recognizing the sarcastic statement on WhatsApp Group with Indonesian language text. 2017 International Conference on Broadband Communication, Wireless Sensors and Powering, BCWSP 2017, 2018–Janua(May), 1–6. https://doi.org/10.1109/BCWSP.2017.8272579

Akbar, H. (2017). Ingin Terapkan Data Mining? Ini Tahapannya. Retrieved from https://mti.binus.ac.id/2017/12/05/ingin-terapkan-data-mining-ini-tahapannya/

Chatzakou, D., Kourtellis, N., Blackburn, J., De Cristofaro, E., Stringhini, G., & Vakali, A. (2017). Detecting Aggressors and Bullies on Twitter. In Proceedings of the 26th International Conference on World Wide Web Companion - WWW ’17 Companion (pp. 767–768). https://doi.org/10.1145/3041021.3054211

Maragoudakis, M., Fakotakis, N., & Kokkinakis, G. (2016). A Bayesian Model for Shallow Syntactic Parsing of Natural Language Texts, (January 2016).

Marcum, C. D., Higgins, G. E., Freiburger, T. L., & Ricketts, M. L. (2012). Battle of the sexes: An examination of male and female cyber bullying. International Journal of Cyber Criminology, 6(1), 904–911.

Pingit, A. (2018). WhatsApp Naikkan Batas Usia Pengguna Menjadi 16 Tahun. Retrieved from https://katadata.co.id/berita/2018/04/27/whatsapp-naikkan-batas-usia-pengguna-dari-menjadi-16-tahun

Prabowo, A. (2017). Pengguna Ponsel Indonesia Mencapai 142% dari Populasi. Retrieved from https://databoks.katadata.co.id/datapublish/2017/08/29/pengguna-ponsel-indonesia-mencapai-142-dari-populasi

Process, F. S., Williams, G. J., & Huang, Z. (1987). Modelling the KDD Process. Proc Centre for Software Reliability Conference on Measurement for Software Control and Assurance. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.4&rep=rep1&type=pdf

Provost, F., & Fawcett, T. (1997). Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. In and R. U. David Heckerman, Heikki Mannila, Daryl Pregibon (Ed.), THE THIRD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (pp. 43–48). Newport Beach, California, USA: AAAI.

Saputra, I., & Rosiyadi, D. (2019). Laporan Akhir Penelitian.

Windu Gata. (2018). Text Mining Program. Retrieved from http://www.gataframework.com/textmining




DOI: http://dx.doi.org/10.30998/faktorexacta.v12i2.4181

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index