PENERAPAN ALGORITMA K-NEAREST NEIGHBORS (KNN) DALAM MENENTUKAN JENIS KB MENGGUNAKAN GOOGLE COLLAB

Abdul Hadi(1*), Decky Ryansyah(2), Goenawan Radzi Brotosaputro(3)

(1) Univeristas Budi Luhur
(2) Universitas Budi Luhur
(3) 
(*) Corresponding Author

Abstract


This study aims to apply the K-Nearest Neighbors (KNN) algorithm to determine the appropriate contraceptive method (KB) based on demographic data and user characteristics. The main problem faced is the lack of an effective decision support system to assist potential KB users in selecting the most suitable contraceptive method according to individual conditions. Additionally, the selection of contraceptive methods is often done manually by healthcare professionals without the support of predictive technology that could enhance recommendation accuracy. This research was conducted using Google Collab as a data processing platform, utilizing Python libraries such as Pandas, NumPy, and Scikit-learn. The dataset used includes information about KB users, including age, number of children, health history, and personal preferences. The data was pre processed to handle missing values and normalized to suit the analysis. The KNN model was tested with variations of the k value to find the optimal parameter that yields the highest accuracy. The results showed that the KNN algorithm was able to recommend contraceptive methods with an accuracy of 76% at k = 5. The main finding of this study is that the KNN model can be used as a decision support tool to determine the most appropriate contraceptive method for individuals. This research is expected to support efforts to improve reproductive health services through the utilization of machine learning technology.

References


V. Kantorová, M. C. Wheldon, P. Ueffing, and A. N. Z. Dasgupta, “Estimating progress towards meeting women’s contraceptive needs in 185 countries: A Bayesian hierarchical modelling study,” PLoS Med, vol. 17, no. 2, 2020, doi: 10.1371/JOURNAL.PMED.1003026.

J. V Raj, J. V. J. Anton, and J. P. Durai Raj, “Detection of recovery of covid-19 cases using machine learning,” Int J Curr Res Rev, vol. 13, no. 6 special Issue, 2021, doi: 10.31782/IJCRR.2021.SP183.

J. R. Gewirtz O’Brien, “Missed Opportunities to Provide Comprehensive Sexual and Reproductive Healthcare Among Hospitalized Adolescents,” J. Adolesc. Heal., vol. 68, no. 2, 2021, doi: 10.1016/j.jadohealth.2020.12.029.

A. Iyer, “Data centric nanocomposites design: Via mixed-variable Bayesian optimization,” Mol Syst Des Eng, vol. 5, no. 8, 2020, doi: 10.1039/d0me00079e.

R. J. Alfirdausy and S. Bahri, “Implementasi Algoritma K-Nearest Neighbor untuk Klasifikasi Diagnosis Penyakit Alzheimer,” Techno.Com, vol. 22, no. 3, 2023, doi: 10.33633/tc.v22i3.8393.

A. N. Nan and D. Juniati, “KLASIFIKASI JENIS JANGKRIK BERDASARKAN SUARA MENGGUNAKAN DIMENSI FRAKTAL METODE HIGUCHI DAN K-NEAREST NEIGHBOR (KNN),” MATHunesa J. Ilm. Mat., vol. 10, no. 1, 2022, doi: 10.26740/mathunesa.v10n1.p199-207.

L. Dausu, “Kesetaraan Gender dalam Program Keluarga Berencana di Kecamatan Wabula Kabupaten Buton,” Kybernan J. Stud. Kepemerintahan, vol. 3, no. 2, 2020, doi: 10.35326/kybernan.v3i2.817.

T. R. Abdillah, “Analisis Komparasi Cycles X Render Dan Cycles Render Menggunakan Google Colab,” J. TIKA, vol. 8, no. 1, 2023, doi: 10.51179/tika.v8i1.1937.

M. A. Khalimi, “Perhitungan Confusion Matrix Multi-Class Clasification 3x3.”

A. Thariq, “Implementasi Market Basket Analysis Menggunakan Algoritma Apriori pada Data Penjualan Buku,” J. Kolaboratif Sains, vol. 6, no. 3, 2023.

N. Iriadi, “Penerapan Algoritma Klasifikasi Data Mining Dalam Penentuan Pemberian Pinjaman Koperasi,” Paradigma, vol. XIV, no. 2, 2012.

P. Irfansyah, Y. A. Purwanto, and S. H. Wijaya, “Machine Learning Model to Determine Dominant Features in Palm Kernel Cake Quality,” IOP Conf. Ser. Earth Environ. Sci., vol. 1359, no. 1, 2024, doi: 10.1088/1755-1315/1359/1/012029.




DOI: http://dx.doi.org/10.30998/faktorexacta.v18i2.28604

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index