Geographc Artificial Intelligence GeoAI dan Natural Language Processing dalam Analisis Data Spatial

Endin Fahrudin(1*), Samso Supriyatna(2), Firman Darmawan(3)

(1) Universitas Pamulang
(2) Universitas Pamulang
(3) Universitas Pamulang
(*) Corresponding Author

Abstract


Geographic Artificial Intelligence (GeoAI) and Natural Language Processing (NLP) are two rapidly advancing technologies in spatial data analysis. GeoAI integrates artificial intelligence with geographic data to identify patterns, make predictions, and support decision-making. Meanwhile, NLP enables the processing and analysis of textual data related to spatial information, such as documents, reports, or geographic descriptions. The objective of this research is to obtain a representation of spatial data patterns through a series of processes, including problem identification, needs analysis, data collection and processing, document representation, and the application of Geographic Artificial Intelligence (GeoAI), Natural Language Processing (NLP), and Fuzzy Similarity methods to spatial or textual tax data and textual land data to identify data similarities. The research explores the integration of GeoAI and NLP in spatial data analysis to enhance the efficiency and accuracy of geographic data interpretation. The methods used in this study are based on artificial intelligence, which extracts spatial information from text and performs machine learning-based spatial analysis. The results demonstrate that the combination of GeoAI and NLP can improve the understanding of spatial patterns in unstructured data and support location-based decision-making processes. This research contributes to the development of more accurate spatial data analysis techniques that can be applied in various fields, such as urban planning, disaster management, and environmental analysis.

Full Text:

PDF (Indonesian)

References


S. Scheider and K. F. Richter, “GeoAI,” Springer Sci. Bus. Media Deutschl. GmbH, 2023, doi: 10.1007/s13218-022-00797-z.

L. H. A. Amri and R. A. Wijayanti, “Pemanfaatan Sistem Informasi Geospasial Online untuk Mendukung Pengambilan Keputusan Pemanfaatan Tata Ruang,” J. Teknol. Inf. dan Terap., vol. 6, no. 2, pp. 62–66, 2019, doi: 10.25047/jtit.v6i2.111.

H. Rumapea, “Methomika: Deteksi Kemiripan Artikel Melalui Keywords dengan Metode Fuzzy String Matching dalam Natural Language Processing,” J. Manaj. Inform. Komputerisasi Akunt., vol. 5, no. 1, 2021, doi: 10.46880/jmika.vol5no1.pp60-66.

Z. Chen, X. Ma, L. Wu, and Z. Xie, “An Intuitionistic Fuzzy Similarity Approach for Clustering Analysis of Polygons,” ISPRS Int. J. Geo-Information, vol. 8, no. 2, 2019, doi: 10.3390/ijgi8020098.

Y. Heryadi and E. Irwansyah, Deep Learning: Aplikasinya di Bidang Geospasial. AWI Technology Press, 2020.

P. Singh, N. Singh, K. K. Singh, and A. Singh, “Chapter 5 - Diagnosing of disease using machine learning,” K. K. Singh, M. Elhoseny, A. Singh, and A. A. B. T.-M. L. and the I. of M. T. in H. Elngar, Eds., Academic Press, 2021, pp. 89–111. doi: https://doi.org/10.1016/B978-0-12-821229-5.00003-3.

I. Saputra and D. Rosiyadi, “Perbandingan Kinerja Algoritma K-Nearest Neighbor, Naïve Bayes Classifier dan Support Vector Machine dalam Klasifikasi Tingkah Laku Bully pada Aplikasi WhatsApp,” Fakt. Exacta, vol. 12, no. 2, p. 101, 2019, doi: 10.30998/faktorexacta.v12i2.4181.

I. Mutia, “KAJIAN PENERAPAN E-LEARNING DALAM PROSES,” Fakt. Exacta, vol. 6, no. 4, pp. 278–289, 2013.

T. Meng, X. Jing, Z. Yan, and W. Pedrycz, “A survey on machine learning for data fusion,” Inf. Fusion, vol. 57, pp. 115–129, May 2020, doi: 10.1016/j.inffus.2019.12.001.

A. Maftukhah, A. Fadlil, and S. Sunardi, “Butterfly Image Classification using Convolution Neural Network with AlexNet Architecture,” J. Infotel, vol. 16, no. 1, pp. 82–95, 2024, doi: 10.20895/infotel.v16i1.1004.




DOI: http://dx.doi.org/10.30998/faktorexacta.v18i2.28518

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index