Identification of Stock Breakouts Using Support Vector Machine with Integrated Fundamental Data and Random Forest Prediction

Gusti Bagus Cahya Utama(1), Ahmad Chusyairi(2*), Riad Sahara(3)

(1) Universitas Siber Asia
(2) Universitas Siber Asia
(3) Universitas Siber Asia
(*) Corresponding Author

Abstract


In this study, we investigated the detection of breakout events in Tesla, Inc. stock by integrating technical analysis with fundamental financial data using a Support Vector Machine (SVM) model. The Opening Range Breakout (ORB) strategy has demonstrated substantial returns, while the Support Vector Machine (SVM) method excels in detecting breakout events. Furthermore, the Random Forest (RF) algorithm effectively forecasts long-term trends. This study aims to integrate fundamental dataspecifically net income and Earnings Per Share (EPS)and a long-term trend prediction derived from RF as additional features in an SVM model for Tesla, Inc. (TSLA) stock. Utilizing the Sample, Explore, Modify, Model, Assess (SEMMA) framework, the research evaluates daily stock data from November 15, 2019, to November 14, 2024. Results indicate that incorporating fundamental data improves SVM precision from 0.08 to 0.18, although recall remains low. Conversely, adding the RF prediction feature does not yield a significant benefit and reduces precision to 0.13. These findings suggest that while integrating fundamental data enhances breakout detection performance, further refinement is essential for the effective incorporation of RF-based predictions.


Full Text:

PDF

References


R. Rohyati, F. P. N. Rokhmah, H. N. U. Syazeedah, R. I. Fitriyaningrum, G. Ramadhan, and M. Syahwildan, Tantangan dan Peluang Pasar Modal Indonesia dalam Meningkatkan Minat Investasi di Era Digital, Kompeten: Jurnal Ilmiah Ekonomi dan Bisnis, vol. 3, no. 1, pp. 909918, 2024, doi: 10.57141/kompeten.v3i1.133.

C. Zarattini, A. Barbon, and A. Aziz, A Profitable Day Trading Strategy For The U.S. Equity Market, SSRN Electronic Journal, pp. 2498, 2024, doi: 10.2139/ssrn.4729284.

Md. S. Ansary, Breakout Stocks Identification using Machine Learning Approaches, ENP Engineering Science Journal, vol. 2, no. 2, pp. 5256, 2022, doi: 10.53907/enpesj.v2i2.173.

J. Zheng, D. Xin, Q. Cheng, M. Tian, and L. Yang, The Random Forest Model for Analyzing and Forecasting the US Stock Market in the Context of Smart Finance, Atlantis Highlights in Computer Sciences, vol. 21, pp. 8290, 2024, doi: 10.2991/978-94-6463-419-8_11.

Y. Chen and T.-T. Hsu, Why US Stock Markets Have Recovered So Fast from the Pandemic Crash, Universal Journal of Accounting and Finance, vol. 9, no. 5, pp. 972981, 2021, doi: 10.13189/ujaf.2021.090508.

H. Hong, Z. Bian, and C.-C. Lee, COVID-19 and instability of stock market performance: evidence from the U.S., Financial Innovation, vol. 7, no. 1, p. 12, 2021, doi: 10.1186/s40854-021-00229-1.

NasdaqTrader, Daily Market Summary. Accessed: Nov. 16, 2024. [Online]. Available: https://www.nasdaqtrader.com/Trader.aspx?id=DailyMarketSummary

Z. Wei, A Financial Analysis and Valuation of Tesla, Advances in Economics, Management and Political Sciences, vol. 102, no. 1, pp. 254259, 2024, doi: 10.54254/2754-1169/102/2024ED0086.

O. Dovbnya, Riding the Bull and the Bear: A Metaphor Analysis of Teslas Stock Volatility in Business Media Discourse, Scientific Journal of Polonia University, vol. 58, no. 3, pp. 5057, 2023, doi: 10.23856/5807.

W. Yustanti, N. Iriawan, and I. Irhamah, Categorical encoder based performance comparison in pre-processing imbalanced multiclass classification, Indonesian Journal of Electrical Engineering and Computer Science, vol. 31, no. 3, p. 1705, 2023, doi: 10.11591/ijeecs.v31.i3.pp1705-1715.

V. Plotnikova, M. Dumas, and F. Milani, Adaptations of data mining methodologies: a systematic literature review, PeerJ Comput Sci, vol. 6, p. e267, 2020, doi: 10.7717/peerj-cs.267.

Omari Firas, A combination of SEMMA & CRISP-DM models for effectively handling big data using formal concept analysis based knowledge discovery: A data mining approach, World Journal of Advanced Engineering Technology and Sciences, vol. 8, no. 1, pp. 009014, 2023, doi: 10.30574/wjaets.2023.8.1.0147.

R. N. Aisyah, R. Damayanti, E. Lilianti, P. Manajemen, F. Ekonomi, and D. Bisnis, Pengaruh Laba Bersih dan Arus Kas terhadap Harga Saham pada Perusahaan Sub Sektor Kimia yang Terdaftar di Bursa Efek Indonesia, Journal of Management Small and Medium Enterprises (SMEs), vol. 16, no. 3, pp. 531539, 2023.

D. N. H. Ilahiyah, Pengaruh Earning Per Share (EPS) dan Pertumbuhan Penjualan terhadap Harga Saham pada Perusahaan Farmasi yang Terdaftar di Bursa Efek Indonesia (BEI), Akuntansi Dewantara, vol. 5, no. 2, 2021, doi: 10.26460/ad.v5i2.9574.

T. Hidayati, D. Wulandari, and W. G. Aedi, Implementasi Algoritma C4.5 Dalam Memprediksi Harga Saham, Scientia Sacra: Jurnal Sains, vol. 3, no. 4, pp. 17, 2023.

M. Harju and A. Mesaros, Evaluating Classification Systems Against Soft Labels with Fuzzy Precision and Recall, Detection and Classification of Acoustic Scenes and Events 2023, 2023, doi: https://doi.org/10.48550/arXiv.2309.13938.

M. Khayatkhoei and W. AbdAlmageed, Emergent Asymmetry of Precision and Recall for Measuring Fidelity and Diversity of Generative Models in High Dimensions, Proceedings of the 40th International Conference on Machine Learning, 2023, doi: https://doi.org/10.48550/arXiv.2306.09618.

S. Riyanto, I. S. Sitanggang, T. Djatna, and T. D. Atikah, Comparative Analysis using Various Performance Metrics in Imbalanced Data for Multi-class Text Classification, International Journal of Advanced Computer Science and Applications, vol. 14, no. 6, 2023, doi: 10.14569/IJACSA.2023.01406116.




DOI: http://dx.doi.org/10.30998/faktorexacta.v18i1.27805

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index