Implementation of Linear Regression Method in Light Strength Measurement Using GY1750BH Sensor

Kartika Kartika(1), Misbahul Jannah(2), Rizki Aulia(3), Misriana Misriana(4*)

(1) Universitas Malikussaleh
(2) Universitas Malikussaleh
(3) Universitas Malikussaleh
(4) Politeknik Negeri Lhokseumawe
(*) Corresponding Author

Abstract


Developments in light sensor technology have made it possible to achieve better measurement accuracy. The GY1750BH sensor, for example, is known for its ability to detect changes in light with high sensitivity. While this sensor has many advantages, the accuracy of the results depends highly on the calibration method. Without proper calibration, measurement data can suffer from biases detrimental to the applications that rely on it. Linear regression methods can extract the mathematical relationship between the sensor output and light intensity in light sensors. In light sensor calibration, linear regression helps determine the relationship between the sensor-generated signal (e.g., voltage or current) and the measured light intensity. Thus, we can mathematically map the sensor's response to changes in light intensity, which is used for measurement correction to get closer to the actual value. Implementing linear regression in the GY1750BH sensor is expected to contribute significantly to improving the measurement accuracy of this sensor. By modeling the sensor's response to the actual light intensity, the data generated is expected to be more consistent and accurate so that it can be used in applications that require high accuracy. The results of this study are light intensity measurement with the application of linear regression on the GY 1750 BH sensor, which is more stable, and the resulting comparison is close to the measurement results using measuring instruments. The error produced before using linear regression is 1.2%, and when using linear regression on the GY 1750 BH sensor, it becomes 0.54%.

Full Text:

PDF

References


D. Satria, Pengantar Teknik Komputer: Konsep dan Prinsip Dasar. PT. Sonpedia Publishing Indonesia, 2023.

Y. A. Nugraha, S. Sumaryo, and M. Ramdhani, Sistem Monitoring Parameter Lingkungan Tanaman Wortel Menggunakan Field Server, eProceedings Eng., vol. 7, no. 3, 2020.

A. Fanindi, B. R. Prawiradiputra, and L. Abdullah, Pengaruh intensitas cahaya terhadap produksi hijauan dan benih kalopo (Calopogonium mucunoides), Jitv, vol. 15, no. 3, pp. 205214, 2010.

H. A. Ahmed, T. Yu-Xin, and Y. Qi-Chang, Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review, South African J. Bot., vol. 130, pp. 7589, 2020.

K. Kartika, A. Asran, M. P. Hasibuan, and M. Misriana, Implementation of Linear Regression Method for Calibration and Temperature Measurement on PT100 Temperature Sensor, J. Elektron. dan Otomasi Ind., vol. 11, no. 2, pp. 503511, 2024.

T. Saputra and U. Surapati, Analisis Efektivitas Sistem Kendali Otomatis PJU Berbasis IoT Menggunakan Mikrokontroler ESP32 dengan Metode Regresi Linier, J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 3, pp. 25822595, 2024.

A. Hasibuan, A. Qodri, M. Isa, and others, Temperature Monitoring System using Arduino Uno and Smartphone Application, Bull. Comput. Sci. Electr. Eng., vol. 2, no. 2, 2021, doi: 10.25008/bcsee.v2i2.1139.

T. H. Purwanto, Pemanfaatan foto udara format kecil untuk ekstraksi digital elevation model dengan metode stereoplotting, Maj. Geogr. Indones., vol. 31, no. 1, pp. 7389, 2017.

B. A. Sakti, S. Prasetya, and I. Nuriskasari, Analisis Pemilihan Sensor dan Ketelitian pada Rancang Bangun Weather Station Sebagai Monitoring System Cuaca Area Politeknik Negeri Jakarta, in Prosiding Seminar Nasional Teknik Mesin, 2022, pp. 651655.

M. R. Giordano et al., From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors, J. Aerosol Sci., vol. 158, p. 105833, 2021.

K. Fathoni, A. P. Pratama, N. A. Salim, and V. N. Sulistyawan, Implementasi Kendali Keseimbangan Gerak Two Wheels Self Balancing Robot Menggunakan Fuzzy Logic, J. Tek. Elektro, vol. 13, no. 2, pp. 8997, 2021.

J. G. Webster and H. Eren, Measurement, Instrumentation, and Sensors Handbook: Two-Volume Set. CRC press, 2018.

R. T. Putra and M. A. R. Pohan, Penerapan Jaringan Syaraf Tiruan untuk Meningkatkan Akurasi Sensor Arus PZEM-004T, Telekontran J. Ilm. Telekomun. Kendali dan Elektron. Terap., vol. 12, no. 2, pp. 119129, 2024.

F. A. Zahra and G. A. Darleen, PERANCANGAN DAN IMPLEMENTASI SENSOR KELEMBAPAN UNTUK MENDETEKSI HUJAN PADA RUMAH TANGGA, Elektr. Borneo, vol. 10, no. 1, 2024.

R. Sk, J. Julsam, K. Kartika, A. Fendri, and M. Mulyadi, Implementasi Mini CNC Router 3 Axis untuk Pembuatan Huruf dan Gambar Berbasis GRBL 3.6. 1, in Prosiding Seminar Nasional Politeknik Negeri Lhokseumawe, 2019, p. 95.

M. GUFRAN, PERINGATAN TINGKAT DERAJAT KEASAMAN AIR BERBASIS IOT DAN PREDIKSI MENGGUNAKAN REGRESI LINEAR PADA HABITAT ARWANA STUDI KASUS: ANDI FISH FARM, Universitas Teknologi Digital Indonesia, 2024.

D. S. Muhammad, OTOMATISASI LAMPU BELAJAR SESUAI PROSEDUR KESEHATAN MATA DAN KECERAHAN RUANGAN BERBASIS MIKROKONTROLER, Universitas Andalas, 2023.

S. Ardhi, T. P. Gunawan, S. Tjandra, G. L. Dewi, and others, Penerapan Metode Regresi Linear dalam Pengembangan Pengukuran Aliran Air pada Sensor YF-S201, J. Tek. Ind., vol. 26, no. 01, pp. 1021, 2023.

N. V. S. R. Nalakurthi et al., Challenges and Opportunities in Calibrating Low-Cost Environmental Sensors, Sensors, vol. 24, no. 11, p. 3650, 2024.

M. Badura, P. Batog, A. Drzeniecka-Osiadacz, and P. Modzel, Regression methods in the calibration of low-cost sensors for ambient particulate matter measurements, SN Appl. Sci., vol. 1, no. 6, p. 622, 2019.

R. Zalukhu, Alat Pemberian Makan Ikan Koi Secara Otomatis Menggunakan Buzzer, Sensor Suhu, Sensor Ph Berbasis Mikrokontroler Atmega328, KODEUNIVERSITAS041060# UniversitasBuddhiDharma, 2018.

H. A. Fahmianto, Detektor pintar kelayakan tanah untuk tanaman pangan menggunakan pendekatan Fuzzy Logic, Universitas Islam Negeri Maulana Malik Ibrahim, 2024.




DOI: http://dx.doi.org/10.30998/faktorexacta.v18i1.26062

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index