COMPARISON OF DIABETES DISEASE CLASSIFICATION MODELS USING LOGISTIC REGRESSION AND RANDOM FOREST ALGORITHMS

putri nabila(1*), Amril Mutoi Siregar(2), Sutan Faisal(3), Adi Rizky Pratama(4)

(1) Universitas Buana Perjuangan Karawang
(2) Universitas Buana Perjuangan Karawang
(3) 
(4) 
(*) Corresponding Author

Abstract


Diabetes is a lifelong chronic disease that disrupts blood sugar regulation. Diabetes is a life-threatening condition that, if left untreated, can lead to death and other health problems. Several medical tests, including the glycated hemoglobin (A1C) test, blood sugar test, oral glucose tolerance test, and fasting blood sugar test, can be used to detect diabetes. According to statistics, high glucose levels are one of the problems associated with diabetes. This study aims to categorize patients into diabetic and non-diabetic groups using specific diagnostic metrics included in the dataset. 1500 patient records with 9 attributes and 2 classes were used by the researchers. The study used machine learning techniques, including Logistic Regression and Random Forest, along with Confusion Matrix and Receiver Operating Characteristics (ROC) assessment. The Random Forest method produced results of 97% accuracy, 97% precision, 100% recall, and 98% f1-score, indicating that the accuracy level seems good but can still be improved. Based on the accuracy findings, Random Forest is the most effective strategy of Logistic Regression.

Full Text:

PDF

References


A. Armghan, J. Logeshwaran, S. M. Sutharshan, K. Aliqab, M. Alsharari, and S. K. Patel, ‘Design of biosensor for synchronized identification of diabetes using deep learning’, Results in Engineering, vol. 20, Dec. 2023, doi: 10.1016/j.rineng.2023.101382.

F. Anwar, Qurat-Ul-Ain, M. Y. Ejaz, and A. Mosavi, ‘A comparative analysis on diagnosis of diabetes mellitus using different approaches – A survey’, Inform Med Unlocked, vol. 21, Jan. 2020, doi: 10.1016/j.imu.2020.100482.

S. C. Gupta and N. Goel, ‘Predictive Modeling and Analytics for Diabetes using Hyperparameter tuned Machine Learning Techniques’, in Procedia Computer Science, Elsevier B.V., 2022, pp. 1257–1269. doi: 10.1016/j.procs.2023.01.104.

F. Navazi, Y. Yuan, and N. Archer, ‘An examination of the hybrid meta-heuristic machine learning algorithms for early diagnosis of type II diabetes using big data feature selection’, Healthcare Analytics, vol. 4, Dec. 2023, doi: 10.1016/j.health.2023.100227.

T. Mora, D. Roche, and B. Rodríguez-Sánchez, ‘Predicting the onset of diabetes-related complications after a diabetes diagnosis with machine learning algorithms’, Diabetes Res Clin Pract, vol. 204, Oct. 2023, doi: 10.1016/j.diabres.2023.110910.

S. Samreen, ‘Memory-efficient, accurate and early diagnosis of diabetes through a machine learning pipeline employing crow search-based feature engineering and a stacking ensemble’, IEEE Access, vol. 9, pp. 134335–134354, 2021, doi: 10.1109/ACCESS.2021.3116383.

S. Chu et al., ‘Machine learning algorithms for predicting the risk of fracture in patients with diabetes in China’, Heliyon, vol. 9, no. 7, Jul. 2023, doi: 10.1016/j.heliyon.2023.e18186.

G. Aguilera-Venegas, A. López-Molina, G. Rojo-Martínez, and J. L. Galán-García, ‘Comparing and tuning machine learning algorithms to predict type 2 diabetes mellitus’, J Comput Appl Math, vol. 427, Aug. 2023, doi: 10.1016/j.cam.2023.115115.

N. P. Tigga and S. Garg, ‘Prediction of Type 2 Diabetes using Machine Learning Classification Methods’, in Procedia Computer Science, Elsevier B.V., 2020, pp. 706–716. doi: 10.1016/j.procs.2020.03.336.

T. Mora, D. Roche, and B. Rodríguez-Sánchez, ‘Predicting the onset of diabetes-related complications after a diabetes diagnosis with machine learning algorithms’, Diabetes Res Clin Pract, vol. 204, Oct. 2023, doi: 10.1016/j.diabres.2023.110910.

A. Hennebelle, H. Materwala, and L. Ismail, ‘HealthEdge: A Machine Learning-Based Smart Healthcare Framework for Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing System’, in Procedia Computer Science, Elsevier B.V., 2023, pp. 331–338. doi: 10.1016/j.procs.2023.03.043.

S. H. Abbood, H. N. A. Hamed, M. S. M. Rahim, A. Rehman, T. Saba, and S. A. Bahaj, ‘Hybrid Retinal Image Enhancement Algorithm for Diabetic Retinopathy Diagnostic Using Deep Learning Model’, IEEE Access, vol. 10, pp. 73079–73086, 2022, doi: 10.1109/ACCESS.2022.3189374.

T. M. Le, T. M. Vo, T. N. Pham, and S. V. T. Dao, ‘A Novel Wrapper-Based Feature Selection for Early Diabetes Prediction Enhanced with a Metaheuristic’, IEEE Access, vol. 9, pp. 7869–7884, 2021, doi: 10.1109/ACCESS.2020.3047942.

R. Marzouk, A. S. Alluhaidan, and S. A. El Rahman, ‘An Analytical Predictive Models and Secure Web-Based Personalized Diabetes Monitoring System’, IEEE Access, vol. 10, pp. 105657–105673, 2022, doi: 10.1109/ACCESS.2022.3211264.

M. K. Hasan, M. A. Alam, D. Das, E. Hossain, and M. Hasan, ‘Diabetes prediction using ensembling of different machine learning classifiers’, IEEE Access, vol. 8, pp. 76516–76531, 2020, doi: 10.1109/ACCESS.2020.2989857.

H. El Massari, Z. Sabouri, S. Mhammedi, and N. Gherabi, ‘Diabetes Prediction Using Machine Learning Algorithms and Ontology’, Journal of ICT Standardization, vol. 10, no. 2, pp. 319–338, 2022, doi: 10.13052/jicts2245-800X.10212.

S. H. Abbood, H. N. A. Hamed, M. S. M. Rahim, A. Rehman, T. Saba, and S. A. Bahaj, ‘Hybrid Retinal Image Enhancement Algorithm for Diabetic Retinopathy Diagnostic Using Deep Learning Model’, IEEE Access, vol. 10, pp. 73079–73086, 2022, doi: 10.1109/ACCESS.2022.3189374.

D. Y. Utami, E. Nurlelah, and F. N. Hasan, ‘Comparison of Neural Network Algorithms, Naive Bayes and Logistic Regression to predict diabetes’, JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 5, no. 1, pp. 53–64, Jul. 2021, doi: 10.31289/jite.v5i1.5201.

R. D. Joshi and C. K. Dhakal, ‘Predicting type 2 diabetes using logistic regression and machine learning approaches’, Int J Environ Res Public Health, vol. 18, no. 14, Jul. 2021, doi: 10.3390/ijerph18147346.

M. Pal and S. Parija, ‘Prediction of Heart Diseases using Random Forest’, in Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1817/1/012009.

M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, ‘Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13. Institute of Electrical and Electronics Engineers Inc., pp. 6308–6325, 2020. doi: 10.1109/JSTARS.2020.3026724.

H. Apriyani, ‘Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus’, 2020. [Online]. Available: https://journal-computing.org/index.php/journal-ita/index

C. Maisyarah, E. Haryatmi, R. Y. Fajriatifah, and Y. H. Puspita, ‘Prediksi Penyakit Diabetes menggunakan Algoritma Artificial Neural Network’, vol. 2, no. 1, pp. 46–52, 2022.

A. M. Siregar, ‘Klasifikasi Untuk Prediksi Cuaca Menggunakan Esemble Learning’, PETIR, vol. 13, no. 2, pp. 138–147, Sep. 2020, doi: 10.33322/petir.v13i2.998.

S. Faisal and U. Buana Perjuangan Karawang Karawang, ‘TechnoXplore Jurnal Ilmu Komputer & Teknologi Informasi Klasifikasi Data Minning Menggunakan Algoritma C4.5 Terhadap Kepuasan Pelanggan Sewa Kamera Cikarang, 2019.




DOI: http://dx.doi.org/10.30998/faktorexacta.v17i3.24388

Refbacks





Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index