Klasifikasi Tingkat Kemanisan Buah Kersen Berdasarkan Fitur Warna NTSC Menggunakan Jaringan Syaraf Tiruan Berbasis Pengolahan Citra Digital

Risvan Rusli(1), Zaky Fachriansyah(2), Muh Ilham(3), Andi Baso Kaswar(4*), Dyah Darma Andayani(5)

(1) Universitas Negeri Makassar
(2) Universitas Negeri Makassar
(3) Universitas Negeri Makassar
(4) Universitas Negeri Makassar
(5) Universitas Negeri Makassar
(*) Corresponding Author

Abstract


The fruit of the calabura tree (Muntingia calabura) is a small red fruit originating from the Prunus genus, often found along roadsides. This fruit contains numerous nutrients beneficial for bodily health, serving as a highly potential source of nutrition. Presently, a challenge exists in determining the sweetness level of calabura fruit, relying heavily on manual human assessment. The development of classification utilizing technology is considered a crucial step. Previous research has concentrated on classifying various objects using RGB, HSV, YCbCr color feature extraction. However, it was observed that RGB, HSV, YCbCr color features are not universally suitable, particularly for calabura fruits. Hence, this study employs a method of classifying the sweetness level of calabura fruit based on NTSC color features using a Digital Image Processing-based Artificial Neural Network (ANN). This approach leverages color-based image processing features. The research involves several stages, starting from acquiring 300 calabura fruit images with 3 levels of classification to the classification process utilizing Backpropagation in the ANN. Multiple training and testing scenarios were conducted to select feature combinations with the highest accuracy and fastest computational time. Results revealed that the most effective feature used was the NTSC color feature as a skin characteristic parameter. Based on training outcomes using 210 training images, the accuracy reached 100% with a computational time of 1.66 seconds per image. Meanwhile, testing with 90 sample images showed an accuracy of 94% with a computational time of 4.23 seconds per image. Thus, it can be concluded that the employed method successfully classifies the quality of calabura fruit images based on color features and skin characteristics.

Full Text:

PDF

References


K. A. Pratama, W. P. Atmaja, and V. Lusiana, “Klasifikasi Tingkat Kematangan Buah Kersen Menggunakan Citra HSI Dengan Metode K-Nearest Neighbor ( KNN ) Kersen merupakan tanaman yang memiliki buah kecil berwarna merah dan manis seperti buah cery . Tanaman Kersen merupakan jenis pohon yang umum sekali ,” vol. 11, no. 1, pp. 105–108, 2022.

A. Khotimah and M. Chatri, “Article Review : Potensi Tanaman Kersen (Muntingia calabura L.) Sebagai Antioksidan,” J. Pendidik. Tambusai , vol. 8, no. 1, pp. 15822–15831, 2024.

S. M. Sirait, “ISOLASI DAN IDENTIFIKASI PEKTIN DARI BUAH KERSEN (Muntinga calabura L),” War. Akab, vol. 44, no. 2, 2021, doi: 10.55075/wa.v44i2.17.

N. Nurholis and I. Saleh, “Hubungan Karakteristik Morfofisiologi Tanaman Kersen (Muntingia Calabura),” Agrovigor J. Agroekoteknologi, vol. 12, no. 2, pp. 47–52, 2019, doi: 10.21107/agrovigor.v12i2.5418.

P. C. Siswipraptini, A. Haris, and W. N. Sari, “Klasifikasi Citra Penyakit Daun Cabai MenggunakanAlgoritma Learning Vector Quantization,” J. Fakta Exacta, vol. 16, no. 2, pp. 119–125, 2023, doi: 10.30998/faktorexacta.v16i2.15900.

O. Algoritma et al., “Optimasi Algoritma Nai?ve BayesUntuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB,” Bull. Comput. Sci. Res., vol. Vol 3, No, no. 3, pp. 242–249, 2023, doi: 10.47065/bulletincsr.v3i3.251.

N. Astrianda, “Klasifikasi Kematangan Buah Tomat Dengan Variasi Model Warna Menggunakan Support Vector Machine,” VOCATECH Vocat. Educ. Technol. J., vol. 1, no. 2, pp. 45–52, 2020, doi: 10.38038/vocatech.v1i2.27.

A. B. Kaswar, A. Akram, and N. Risal, “13505-33853-2-Pb,” vol. 01, no. May, pp. 1–8, 2020.

I. Amal, M. Muhammad, and A. B. Kaswar, “Sistem Pendeteksi Kematangan Buah Tomat Berbasis Pengolahan Citra Digital Menggunakan Metode Jaringan Syaraf Tiruan | Ishak | Jurnal MediaTIK,” J. Mediat., vol. 5, no. 1, pp. 65–69, 2022, [Online]. Available: https://ojs.unm.ac.id/mediaTIK/article/view/33214/15753

A. S. Agung, M. S. Hersyam, A. B. Kaswar, D. Andayani, and U. Negeri, “Classification of Tomato Quality Based on Color Features and Skin Characteristics Using Image Processing Based Artificial Kulit Menggunakan Jaringan Saraf Tiruan Berbasis Pengolahan,” J. Tek. Inform., vol. 4, no. 5, pp. 1021–1032, 2023.

Wulandari, Sasmita, M. R. Mulia, A. B. Kaswar, D. D. Andayani, and A. S. Agung, “Klasifikasi Kandungan Nutrisi Buah Pisang Berdasarkan Fitur Tekstur dan Warna LAB menggunakan Jaringan Syaraf Tiruan Berbasis Pengloahan Citra Digital,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 3, pp. 507–518, 2024, doi: 10.25126/jtiik.938332.

T. W. Harjanti and H. Himawan, “Teknologi Pengolahan Citra Digital Untuk Ekstraksi Ciri pada Citra Daun untuk Identifikasi Tumbuhan Obat,” Fakt. Exacta, vol. 14, no. 3, p. 150, 2021, doi: 10.30998/faktorexacta.v14i3.9841.

A. Susanto, “Penerapan Operasi Morfologi Matematika Citra Digital Untuk Ekstraksi Area Plat Nomor Kendaraan Bermotor,” Pseudocode, vol. 6, no. 1, pp. 49–57, 2019, doi: 10.33369/pseudocode.6.1.49-57.

A. Anggrawan, H. Hairani, and M. A. Candra, “Prediction of Electricity Usage with Back-propagation Neural Network,” Int. J. Eng. Comput. Sci. Appl., vol. 1, no. 1, pp. 9–18, 2022, doi: 10.30812/ijecsa.v1i1.1722.

A. Irianti, P. H. Rantelinggi, A. Taufik, N. Zulkarnaim, and S. Cokrowibowo, “Implementation of Backpropagation Artificial Neural Network for Food Price Prediction in Majene Central Market,” J. Tek. Inform., vol. 3, no. 3, pp. 681–688, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.3.226




DOI: http://dx.doi.org/10.30998/faktorexacta.v17i3.23347

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index