Pemanfaatan Algoritma K-Means dalam Klasterisasi Gempa Sulawesi

Arief Wibowo(1*), Wawan Gunawan(2)

(1) Universitas Budi Luhur
(2) Universitas Mercu Buana Universitas Budi Luhur
(*) Corresponding Author

Abstract


Indonesia is a region that frequently experiences earthquakes, especially in the Sulawesi area which has significant active faults. Sulawesi is an area that has quite high seismic intensity, and there are several active faults which are earthquake source zones. This study uses M-Means with a total of 9,710 records starting from 2019-2023 and the attributes consist of event_id, date_time, latitude, longitude, magnitude, mag_type, depth_km, phase_count, azimuth_gap, location, agencydengan. This data processing compares magnitude and depth consisting of 3 clusters, namely 51-132 Km depth with a total of 1,311, 3-50 Km depth with a total of 7,527, 133-300 Km depth with a total of 872, while the process with magnitude, depth and azimuth gap attributes consists of 4 clusters with each cluster respectively 3,957, 1,546, 1,458, and 2,749. By using a different set of input features, this research identifies that the results from 3 clusters or 4 clusters indicate that the province of South Sumatra shows a high level of earthquake proneness and frequent frequency in all clusters with the epicenter of the earthquake being in the Maluku Sea, between South Sulawesi with Southeast Sulawesi, as well as the province of Gorontalo. Based on the results obtained, there is a need for early prevention related to disasters, especially earthquakes that occurred on the island of Sumatra based on earth faults that run through the island..


References


ESDM, “Gempa Bumi Di Wilayah Donggala Mengikuti Pola Patahan Palu-Koro,” 2018. https://www.esdm.go.id/id/media-center/arsip-berita/gempa-bumi-di-wilayah-donggala-mengikuti-pola-patahan-palu-koro.

“Indonesia di Lingkaran Api Pasifik,” 2019. https://indonesiabaik.id/infografis/indonesia-di-lingkaran-api-pasifik.

L. D. Muda, “Gorontalo Dikepung Sesar Aktif Pemicu Gempa, Masyarakat Pesisir dan Lereng Butuh Mitigasi Bencana,” 2021. https://www.ung.ac.id/home/berita/gorontalo-dikepung-sesar-aktif-pemicu-gempa-masyarakat-pesisir-dan-lereng-butuh-mitigasi-bencana.

A. Arif, “Sesar Matano Berpotensi Jadi Sumber Gempa Besar Berikutnya,” KOMPAS, 2017. https://www.kompas.id/baca/humaniora/2023/03/01/sesar-matano-berpotensi-jadi-sumber-gempa-besar-berikutnya.

P. Setyaningrum, “4 Sesar Aktif di Sulawesi, Ada Sesar Palu Koro yang Pernah Memicu Gempa dan Tsunami,” 2022. https://makassar.kompas.com/read/2022/11/27/201914378/4-sesar-aktif-di-sulawesi-ada-sesar-palu-koro-yang-pernah-memicu-gempa-dan?page=all.

B. Ku, G. Kim, J. K. Ahn, J. Lee, and H. Ko, “Attention-Based Convolutional Neural Network for Earthquake Event Classification,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 12, pp. 2057–2061, 2021, doi: 10.1109/LGRS.2020.3014418.

O. M. Saad, A. G. Hafez, and M. S. Soliman, “Deep Learning Approach for Earthquake Parameters Classification in Earthquake Early Warning System,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 7, pp. 1293–1297, 2021, doi: 10.1109/LGRS.2020.2998580.

M. A. Murti, R. Junior, A. N. Ahmed, and A. Elshafie, “Earthquake multi-classification detection based velocity and displacement data filtering using machine learning algorithms,” Sci. Rep., vol. 12, no. 1, pp. 1–12, 2022, doi: 10.1038/s41598-022-25098-1.

K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.

L. Peng, W. Jing-Chao, L. Bin, L. Dan-Yu, C. Yong-Feng, and Y. Jia-Lun, “Research on data mining of wind disaster of power transmission line based on clustering analysis,” Proc. - 2019 6th Int. Conf. Inf. Sci. Control Eng. ICISCE 2019, pp. 459–463, 2019, doi: 10.1109/ICISCE48695.2019.00098.

P. Prihandoko and B. Bertalya, “a Data Analysis of the Impact of Natural Disaster Using K-Means Clustering Algorithm,” Kursor, vol. 8, no. 4, p. 169, 2017, doi: 10.28961/kursor.v8i4.109.

W. Jianguo and X. Linyao, “Application of K-means Algorithm in Geological Disaster Monitoring System,” Int. J. Adv. Network, Monit. Control., vol. 3, no. 3, pp. 16–22, 2019, doi: 10.21307/ijanmc-2019-002.

D. Wu, Y. Zhang, F. Yang, S. Cheng, H. Sun, and T. Sun, “Improved k-means algorithm based on optimizing initial cluster centers,” ICIC Express Lett., vol. 7, no. 3 B, pp. 991–996, 2013.

A. Budiman, S. Defit, and Y. Yunus, “Comparison of Priority Areas and Rehabilitation Risk Areas for Post Disaster by K-Means Method,” J. Sistim Inf. dan Teknol., vol. 3, pp. 70–75, 2020, doi: 10.37034/jsisfotek.v3i2.112.

N. A. Khairani and E. Sutoyo, “Application of K-Means Clustering Algorithm for Determination of Fire-Prone Areas Utilizing Hotspots in West Kalimantan Province,” Int. J. Adv. Data Inf. Syst., vol. 1, no. 1, pp. 9–16, 2020, doi: 10.25008/ijadis.v1i1.13.

F. Sutomo et al., “Optimization of the K-Nearest Neighbors Algorithm Using the Elbow Method on Stroke Prediction,” J. Tek. Inform., vol. 4, no. 1, pp. 125–130, 2023, doi: 10.52436/1.jutif.2023.4.1.839.

F. Marisa, A. R. Wardhani, W. Purnomowati, A. V. Vitianingsih, A. L. Maukar, and W. Puspitarini, “K-MEANS WITH ELBOW METHOD,” vol. 7, no. 2, pp. 307–312, 2023.

M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, “Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster,” IOP Conf. Ser. Mater. Sci. Eng., vol. 336, no. 1, 2018, doi: 10.1088/1757-899X/336/1/012017.

E. Umargono, J. E. Suseno, and V. G. S. K., “K-Means Clustering Optimization using the Elbow Method and Early Centroid Determination Based-on Mean and Median,” vol. 474, no. Isstec 2019, pp. 234–240, 2020, doi: 10.5220/0009908402340240.

G. Racolte et al., “Spherical K-Means and Elbow Method Optimizations with Fisher Statistics for 3D Stochastic DFN from Virtual Outcrop Models,” IEEE Access, vol. 10, pp. 63723–63735, 2022, doi: 10.1109/ACCESS.2022.3182332.

R. Sammouda and A. El-Zaart, “An Optimized Approach for Prostate Image Segmentation Using K-Means Clustering Algorithm with Elbow Method,” Comput. Intell. Neurosci., vol. 2021, 2021, doi: 10.1155/2021/4553832.

H. Humaira and R. Rasyidah, “Determining The Appropiate Cluster Number Using Elbow Method for K-Means Algorithm,” 2020, doi: 10.4108/eai.24-1-2018.2292388.

BMKG, “Skala MMI (Modified Mercalli Intensity),” 2024. https://www.bmkg.go.id/gempabumi/skala-mmi.bmkg.

A. Situmorang, “Jenis-jenis patahan bumi, penyebab gempa dan tsunami,” 2023. https://sains.sindonews.com/read/1097019/766/jenis-jenis-patahan-bumi-penyebab-gempa-dan-tsunami-1683972315.




DOI: http://dx.doi.org/10.30998/faktorexacta.v17i3.23169

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index