Analisis Sentimen Terhadap Kontroversi Putusan MK Mengenai Usia Capres-Cawapres Menggunakan Multi-Layer Perceptron Dengan Teknik SMOTE

Sasmita Sasmita(1), Rezki Nurul Jariah S.Intam(2), Dewi Fatmarani Surianto(3), Muhammad Fajar B(4*)

(1) 
(2) Universitas Negeri Makassar
(3) Universitas Negeri Makassar
(4) Universitas Negeri Makassar
(*) Corresponding Author

Abstract


In October 2023, the Constitutional Court's decision on age limit requirements for presidential and vice-presidential candidates stirred controversy, perceived as favoring a specific vice-presidential candidate. Public reactions flooded social media platforms, particularly on Najwa Shihab's YouTube channel, where sentiment analysis was conducted on 505 comments under the video titled "Putusan MK: Publik memang Seharusnya Marah" (Constitutional Court Decision: The Public Should Indeed Be Angry). The comments were categorized into three sentiment classes: 425 negative, 42 neutral, and 38 positive. The study employed Multi-Layer Perceptron (MLP) models tested on both imbalanced and balanced data using the SMOTE oversampling technique. Two feature extraction methods, TF-IDF weighting and countvectorizer, were applied. Results showed that the combination of TF-IDF with balanced data yielded the most effective classification model, boasting a remarkable accuracy, precision, recall, and F1-score, each at 99%.

Full Text:

PDF (Indonesian)

References


S. Anggara, “Buku Sistem Politik Indonesia,” in Sistem Politik Indonesia, Bandung: CV Pustaka Setia, 2013.

“MK Putuskan Syarat Usia Capres-Cawapres 40 Tahun Inkonstitusional Bersyarat,” Kompas.com, 2023. https://nasional.kompas.com/read/2023/10/16/15300701/mk-putuskan-syarat-usia-capres-cawapres-40-tahun-inkonstitusional-bersyarat (accessed Oct. 25, 2023).

Mahkamah Konstitusi Republik Indonesia, “Pengujian Materiil Undang-Undang Nomor 7 Tahun 2017 tentang Pemilihan Umum.” Jln. Medan Merdeka Barat No. 6, Jakarta Pusat, 2023.

F. Pratama, “Beragam Tanggapan soal Putusan MK Mengenai Batas Usia Capres/Cawapres,” detikNews, 2023. https://news.detik.com/berita/d-6987142/beragam-tanggapan-soal-putusan-mk-mengenai-batas-usia-capres-cawapres (accessed Oct. 25, 2023).

Hermila, S. Ayu Ashari, R. R. Taufik Bau, and S. Suhada, “Eksplorasi Intensitas Penggunaan Sosial Media (Studi Deskriptif Pada Mahasiswa Teknik IInformatika UNG),” Invert. J. Inf. Technol. Educ., vol. 3, no. 2, 2023, [Online]. Available: http://ejurnal.ung.ac.id/index.php/inverted

F. A. Wenando, R. Hayami, and A. J. Anggrawan, “Analisis Sentimen Pada Pemerintahan Terpilih Pada Pilpres 2019 Ditwitter Menggunakan Algoritme Naïvebayes,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 7, no. 1, pp. 101–106, 2020, doi: 10.33330/jurteksi.v7i1.851.

M. R. Shinde and P. C. Gill, “Pattern Discovery Techniques for the Text Mining and its Applications,” Int. J. Sci. Res. ISSN, vol. 3, no. 5, pp. 1660–1664, 2012, [Online]. Available: www.ijsr.net

A. Macanovic, “Text mining for social science – The state and the future of computational text analysis in sociology,” Soc. Sci. Res., vol. 108, no. August, p. 102784, 2022, doi: 10.1016/j.ssresearch.2022.102784.

E. M. O. N. Haryanto, A. K. A. Estetikha, and R. A. Setiawan, “Implementasi Smote Untuk Mengatasi Imbalanced Data Pada Sentimen Analisis Sentimen Hotel Di Nusa Tenggara Barat Dengan Menggunakan Algoritma Svm,” J. Inf. Interaktif, vol. 7, no. 1, pp. 16–20, 2022.

Niharika and S. Malhotra, “Analyzing the Sentiments with Neural Network,” J. Sci. Res., vol. 65, no. 01, pp. 266–272, 2021, doi: 10.37398/jsr.2021.650134.

S. Sarosa, Analisis Data Penelitian Kualitatif. PT Kanisius, 2021. doi: 10.1080/10916466.2018.1425717.

A. F. Hardiyanti and D. Fitrianah, “Perbandingan Algoritma C4.5 dan Multilayer Perceptron untuk Klasifikasi Kelas Rumah Sakit di DKI Jakarta,” J. Telekomun. dan Komput., vol. 11, no. 3, p. 198, 2021, doi: 10.22441/incomtech.v11i3.10632.

J. T. Samudra and B. H. Hayadi, “Comparison of Adam’s Optimization Function and Stochastic Gradient Descent on Bad Credit Classification of Savings and Loan Cooperatives Using Multilayer Perceptron,” CESS (Journal Comput. Eng. Syst. Sci., vol. 7, no. 2, p. 435, 2022, doi: 10.24114/cess.v7i2.35210.

I. K. A. G. Wiguna, P. Sugiartawan, I. G. I. Sudipa, and I. P. Y. Pratama, “Sentiment Analysis Using Backpropagation Method to Recognize the Public Opinion,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 4, p. 423, 2022, doi: 10.22146/ijccs.78664.

R. Wahyudi and G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” J. Inform., vol. 8, no. 2, pp. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.

A. N. Ulfah and M. K. Anam, “Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM),” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 1, pp. 1–10, 2020, doi: 10.35957/jatisi.v7i1.196.

N. E. Oktaviana, Y. A. Sari, and I. Indriati, “Analisis Sentimen terhadap Kebijakan Kuliah Daring Selama Pandemi Menggunakan Pendekatan Lexicon Based Features dan Support Vector Machine,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 2, pp. 357–362, 2022, doi: 10.25126/jtiik.2022925625.

V. R. Prasetyo, G. Erlangga, and D. A. Prima, “Analisis Sentimen untuk Identifikasi Bantuan Korban Bencana Alam berdasarkan Data di Twitter Menggunakan Metode K-Means dan Naive Bayes,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 5, pp. 1055–1062, 2023, doi: 10.25126/jtiik.20231057077.

K. W. Gusti, “Klasifikasi Bencana Alam Pada Twitter Menggunakan Naïve Bayes, Support Vector Machine Dan Logistic Regression,” Technol. J. Ilm., vol. 14, no. 4, p. 349, 2023, doi: 10.31602/tji.v14i4.11614.

Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.

N. Agustina and C. N. Ihsan, “Pendekatan Ensemble Untuk Analisis Sentimen Covid19 Menggunakan Pengklasifikasi Soft Voting,” vol. 10, no. 2, pp. 263–270, 2023, doi: 10.25126/jtiik.2023106215.

H. Hidayatullah, P. Purwantoro, and Y. Umaidah, “Penerapan Naïve Bayes Dengan Optimasi Information Gain Dan Smote Untuk Analisis Sentimen Pengguna Aplikasi Chatgpt,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, 2023.

D. Rosiyadi, “Klasifikasi Komentar Instagram Untuk Identifikasi Keluhan Pelanggan Jasa Pengiriman Barang Dengan Teknik SMOTE,” vol. 12, no. 4, pp. 280–290, 2019, doi: 10.30998/faktorexacta.v12i4.4981.

M. E. Johan and S. A. Azka, “Prediction of Alleged Stress Symptoms based on Indonesian Sentiment Lexicon using Multilayer Perceptron,” G-Tech J. Teknol. Terap., vol. 7, no. 3, pp. 958–966, 2023.

J. Asian, M. Dholah Rosita, and T. Mantoro, “Sentiment Analysis for the Brazilian Anesthesiologist Using Multi-Layer Perceptron Classifier and Random Forest Methods,” J. Online Inform., vol. 7, no. 1, p. 132, 2022, doi: 10.15575/join.v7i1.900.

N. Munasatya and S. Novianto, “Natural Language Processing untuk Sentimen Analisis Presiden Jokowi Menggunakan Multi Layer Perceptron,” Techno.Com, vol. 19, no. 3, pp. 237–244, 2020, doi: 10.33633/tc.v19i3.3630.

Netlytic, “Netlytic - social media text and social networks analyzer,” 2016. https://netlytic.org/index.php?logon (accessed Oct. 30, 2023).

N. Silalahi and G. Leonarde Ginting, “Rekomendasi Berita Berkaitan dengan Menerapkan Algoritma Text Mining dan TF-IDF,” Bull. Comput. Sci. Res., vol. 3, no. 4, pp. 276–282, 2023, doi: 10.47065/bulletincsr.v3i4.266.

V. Rupapara, F. Rustam, H. F. Shahzad, A. Mehmood, I. Ashraf, and G. Y. U. S. Choi, “Impact of SMOTE on Imbalanced Text Features for Toxic Comments Classification Using RVVC Model,” vol. 9, pp. 78621–78634, 2021, doi: 10.1109/ACCESS.2021.3083638.

Baiq Nurul Azmi, Arief Hermawan, and Donny Avianto, “Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver,” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 4, pp. 281–290, 2023, doi: 10.35746/jtim.v4i4.298.

S. Koço and C. Capponi, “On multi-class classification through the minimization of the confusion matrix norm,” J. Mach. Learn. Res., vol. 29, pp. 277–292, 2013.




DOI: http://dx.doi.org/10.30998/faktorexacta.v17i2.22442

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index