PENERAPAN ALGORITMA NAIVE BAYES CLASSIFIER UNTUK ANALISIS SENTIMEN KOMENTAR TWITTER PROYEK PEMBAGUNAN IKN

Faiz Zamzami(1*), Rahmat Hidayat(2), Rina Fathonah(3)

(1) Department of Data Science, Univesitas Putra Bangsa, Indonesia
(2) Department of Informatic, Univesitas Putra Bangs, Indonesia
(3) Department of Data Science, Univesitas Putra Bangsa, Indonesia
(*) Corresponding Author

Abstract


Recently, the relocation of Indonesia's capital city has become a hot topic of discussion among the public. Various opinions emerged regarding this mega project proposed by President Joko Widodo. Especially on social media, Twitter has become one of the most popular platforms in Indonesia as a forum for expressing people's opinions in public. In the context of the development of IKN Nusantara, researchers conducted an analysis of Twitter users' comments on President Joko Widodo's official account. Using the Naïve Bayes method with a dataset containing 220 comments consisting of 116 negative comments, 70 positive comments and 34 neutral comments. In this research, researchers developed a Python-based machine learning program. The analysis results show respective values of Precision 62%, Recall 66%, and f1-Score 63% with an accuracy level of 66%. In testing using 20% of the data, the program successfully predicted 20 negative comments, 8 neutral comments, and 16 positive comments.

Full Text:

PDF (Indonesian)

References


M. K. Saraswati et al., “Pemindahan Ibu Kota Negara Ke Provinsi Kalimantan Timur Berdasarkan Analisis Swot,” Jurnal Ilmu Sosial dan Pendidikan (JISIP), vol. 6, no. 2, pp. 2598–9944, 2022, doi: 10.36312/jisip.v6i1.3086/http.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” Jurnal Teknokompak, vol. 15, no. 1, pp. 131–145, 2021.

D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 10, no. 1, Jan. 2022, doi: 10.23960/jitet.v10i1.2262.

N. Dwitiyanti and N. Selvia, “Analisis Sentimen Twitter Kebiasaan New Normal,” Seminar Nasional Riset dan Teknologi dan Inovasi Teknologi (SEMNAS RISTEK), no. 2020, 2021.

I. Novitasari, T. B. Kurniawan, D. A. Dewi, and Misinem, “Analisis sentimen masyarakat terhadap tweet ruang guru menggunakan algoritma naive bayes classifier (NBC) [Analysis of public sentiment towards ruang guru’s tweets using the Naive Bayes Classifier (NBC) algorithm],” Jurnal Mantik, vol. 6, no. 3, 2022.

A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Riset Komputer), vol. 8, no. 6, p. 219, Dec. 2021, doi: 10.30865/jurikom.v8i6.3655.

S. N. J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 5, no. 3, 2019, doi: 10.26418/jp.v5i3.34368.

F. Nurhuda, S. W. Sihwi, and A. Doewes, “Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier,” vol. 2, no. 2, 2013.

M. Pramadani, R. Putra, K. Rizky, and N. Wardani, “JUTIM (Jurnal Teknik Informatika Musirawas) PENERAPAN TEXT MINING DALAM MENGANALISIS KEPRIBADIAN PENGGUNA MEDIA SOSIAL,” 2020.

R. L. Atimi and Enda Esyudha Pratama, “Implementasi Model Klasifikasi Sentimen Pada Review Produk Lazada Indonesia,” Jurnal Sains dan Informatika, vol. 8, no. 1, 2022, doi: 10.34128/jsi.v8i1.419.

M. Azahri, N. Sulistiyowati, and M. Jajuli, “ANALISIS SENTIMEN PENGGUNA KERETA API INDONESIA MELALUI SOSIAL MEDIA TWITTER DENGAN ALGORITMA NAÏVE BAYES CLASSIFIER,” 2023.

M. C. Kirana, N. P. Perkasa, M. Z. Lubis, and M. Fani, “Visualisasi Kualitas Penyebaran Informasi Gempa Bumi di Indonesia Menggunakan Twitter,” JOURNAL OF APPLIED INFORMATICS AND COMPUTING, 2019, doi: 10.30871/jaic.v0i0.1246.

E. Febriyani and H. Februariyanti, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Algoritma Naive Bayes Classifier Di Twitter,” Jurnal TEKNO KOMPAK, vol. 17, no. 1, pp. 25–38, 2023.

T. Yusnitasari, D. Ikasari, E. E. S. Pratiwi, and N. S. Ramdani, “Analisis Sentimen Terhadap Review Restoran Fish Streat Pada Aplikasi Zomato Menggunakan Stemming Nazief Adriani Dan Naive Bayes Classifier,” Prosiding Sentrinov, vol. Vol 3, 2017.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” 2021.

A. Tumanggor and S. Hasugian, “Penerapan Data Mining Untuk Memprediksi Tingkat Kemampuan Anak Dalam Mengikuti Mata Pelajaran Dengan Metode C4.5 Pada SDN 105351 Bakaran Batu,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 4, no. 1, 2021.

M. I. Petiwi, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, 2022, doi: 10.30865/mib.v6i1.3530.

L. Qadrini, A. Sepperwali, and A. Aina, “Decision Tree Dan Adaboost Pada Klasifikasi Penerima Program Bantuan Sosial,” Jurnal Inovasi Penelitian, vol. 2, no. 7, 2021.




DOI: http://dx.doi.org/10.30998/faktorexacta.v17i1.22265

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index