SMART ATTENDANCE WITH FACE ANTI-SPOOFING TECHNOLOGY USING HAAR CASCADE CLASSIFIER

Ujang Supriatna(1*), Dian Ade Kurnia(2), Tati Suprapti(3)

(1) STMIK IKMI Cirebon
(2) STMIK IKMI Cirebon
(3) STMIK IKMI Cirebon
(*) Corresponding Author

Abstract


Traditional attendance systems often encounter challenges in efficiently and accurately recording attendance. This research aims to introduce an innovative solution through the development of an intelligent anti-spoofing attendance system based on facial recognition using the Haar Cascade Classifier method. Designed to overcome the inefficiencies in attendance recording, this system ensures the accuracy of educational staff attendance records. Its development method relies on the Haar Cascade Classifier, employing image processing to detect learned object features, particularly focusing on facial recognition. Research findings indicate that the implementation of this system achieves an average accuracy rate of 98.90% in attendance recording. The facial recognition technology ensures reliable attendance recording with confidence levels exceeding 80%, signifying precise facial identification that addresses various challenges and ensures attendance data integrity. Not only does the system identify educational staff with high accuracy, but it also provides prompt responses for efficient attendance logging and verification. Beyond its technical benefits, this study significantly contributes to the development of smarter and more efficient attendance technology. The system plays a crucial role in enhancing the discipline of educational staff at STMIK IKMI Cirebon and streamlining attendance management and evaluation across educational institutions.

Full Text:

PDF

References


REFERENCES

K. Alhanaee, M. Alhammadi, N. Almenhali, and M. Shatnawi, “Face recognition smart attendance system using deep transfer learning,” Procedia Comput. Sci., vol. 192, pp. 4093–4102, 2021, doi: 10.1016/j.procs.2021.09.184.

T. V. Dang, “Smart Attendance System based on Improved Facial Recognition,” J. Robot. Control, vol. 4, no. 1, pp. 46–53, 2023, doi: 10.18196/jrc.v4i1.16808.

M. W. Septyanto, H. Sofyan, H. Jayadianti, O. S. Simanjuntak, and D. B. Prasetyo, “Aplikasi Presensi Pengenalan Wajah Dengan Menggunakan Algoritma Haar Cascade Classifier,” Telematika, vol. 16, no. 2, p. 87, 2020, doi: 10.31315/telematika.v16i2.3182.

R. Bairagi, R. Ahmed, S. A. Tisha, M. S. Sarder, M. S. Islam, and M. A. Islam, “A Real-time Face Recognition Smart Attendance System with Haar Cascade Classifiers,” Proc. 3rd Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2021, no. October, pp. 1417–1425, 2021, doi: 10.1109/ICIRCA51532.2021.9544872.

K. Marzuki, N. Hanif, and I. P. Hariyadi, “Application of Domain Keys Identified Mail, Sender Policy Framework, Anti-Spam, and Anti-Virus: The Analysis on Mail Servers,” International …. download.garuda.kemdikbud.go.id, 2022. [Online]. Available: http://download.garuda.kemdikbud.go.id/article.php?article=3257880&val=23997&title=Application of Domain Keys Identified Mail Sender Policy Framework Anti-Spam and Anti-Virus The Analysis on Mail Servers

I. K. S. Buana, “Penerapan Pengenalan Wajah Untuk Aplikasi Absensi dengan Metode Viola Jones dan Algoritam LBPH,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 1008, 2021, doi: 10.30865/mib.v5i3.3008.

J. Ilmiah and R. Darmawan, “Perancangan Sistem Absensi menggunakan Face Recognition dengan Haar Cascade Classifier,” vol. 5, no. 2, pp. 1–8, 2023.

R. Rossi, M. A. Lazarini, and K. Hirama, “Systematic Literature Review on the Accuracy of Face Recognition Algorithms,” EAI Endorsed Trans. Internet Things, vol. 8, no. 30, p. e5, 2022, doi: 10.4108/eetiot.v8i30.2346.

S. J, J. Joshi, P. M, and U. B, “Face Recognition Based Attendance System Using OpenCV Python,” Adv. Intell. Syst. Technol., vol. 7, no. 10, pp. 52–56, 2022, doi: 10.53759/aist/978-9914-9946-1-2_10.

A. Info and D. I. Signature, “Application of 2DPCA and SOM Algorithms to Identification of Digital Signature Ownership,” vol. 16, no. 3, pp. 208–218, 2023, doi: 10.30998/faktorexacta.v16i3.17504.

Q. Aini, W. Febriani, C. Lukita, S. Kosasi, and ..., “New normal regulation with face recognition technology using attendx for student attendance algorithm,” … Sci. …, 2022, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9829079/




DOI: http://dx.doi.org/10.30998/faktorexacta.v17i3.21166

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index