Clustering the K-means Algorithm with the Approach to Student Interpersonal Communication Patterns in Selecting Secondary Schools

Rayung Wulan(1*), Themotia Titi Widaningsih(2), Fit Yanuar(3)

(1) 
(2) Universitas Sahid Jakarta
(3) Universitas Sahid Jakarta
(*) Corresponding Author

Abstract


This research aims to understand students' communication patterns in choosing secondary schools by identifying existing group patterns, and understanding the factors that influence students' decisions in choosing secondary schools. Using the k-means algorithm clustering method, the dataset was obtained from student data, psychological test scores and interpersonal communication in three grade 9 junior high schools in West Jakarta. The dataset obtained was 317, the results of data clearing were 259 students who were eligible to be tested. The results of tests carried out with 4 clusters show an accuracy value close to 0, with cluster 2 having a value of -0.150. The results show that students who choose a secondary school based on their psychological test results and interpersonal communication between parents, homeroom teachers and the school are the dominant values in the continuity of selecting a senior secondary school

References


D. Maulinda and C. Asllinda, “Komunikasi Interpersonal Orang Tua Pengguna Facebook dalam Memotivasi Prestasi Anak di Desa Sedinginan,” J. Soc. Media Messag., vol. 1, no. 1, 2022.

N. Nurahman, A. Purwanto, and S. Mulyanto, “Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas, Pendidik, dan Tenaga Pendidik,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, 2022, doi: 10.30812/matrik.v21i2.1411.

M. R. Sholihin and Rudiman, “Pemetaan Sekolah Muhammadiyah di Kabupaten PPU Berdasarkan Fasilitas , Pendidik dan Tenaga Pendidik Menggunakan Metode K-Means Clustering,” J. Keilmuan dan Apl. Tek. Inform., vol. 5, no. 36, 2022.

M. Farozi, “Metode K-Means Clustering Dalam Merancang Strategi Promosi Penerimaan Mahasiswa Baru Pada STIE Serelo Lahat,” J. Ilm. Inform. Glob., vol. 12, no. 2, 2022, doi: 10.36982/jiig.v12i2.2191.

Sekar Setyaningtyas, B. Indarmawan Nugroho, and Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means,” J. Teknoif Tek. Inform. Inst. Teknol. Padang, vol. 10, no. 2, 2022, doi: 10.21063/jtif.2022.v10.2.52-61.

A. S. Harahap and P. Zulvia, “Klasterisasi Desa dengan Menggunakan Algoritma K-Means pada Data Potensi Desa,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, 2021, doi: 10.30865/jurikom.v8i6.3724.

D. Widiyanto, “Tinjauan Algoritma RoI (Region of Interest) Dengan Metode Pengambangan Otsu Dan Klasterisasi K-Mean; Hasil Dan Tantangannya,” Inform. J. Ilmu Komput., vol. 16, no. 2, 2020, doi: 10.52958/iftk.v16i2.1961.

J. Oxianus Sabarua and I. Mornene, “Komunikasi Keluarga dalam Membentuk Karakter Anak,” Int. J. Elem. Educ., vol. 4, no. 1, 2020, doi: 10.23887/ijee.v4i1.24322.

D. Dewirahmadanirwati, “Peranan Komunikasi Interpersonal Dilingkungan Keluarga Dalam Membentuk Pola Komunikasi Anak Dengan Lingkungan Sosialnya,” J. Ilm. Pendidik. Scholast., vol. 3, no. 3, 2019, doi: 10.36057/jips.v3i3.381.

M. Ula, R. P. Phonna, I. Saputra, S. FNU, and A. Pratama, “Penerapan Model Decision Support System Dalam Penentuan Pemilihan Minat Siswa,” J. TIKA, vol. 7, no. 1, 2022, doi: 10.51179/tika.v7i1.1103.

I.- Rusdiana, “Human–Computer Interaction (HCI) dan Implikasinya Terhadap Perubahan Pola Komunikasi Keluarga,” Al-Syakhsiyyah J. Law Fam. Stud., vol. 3, no. 1, 2021, doi: 10.21154/syakhsiyyah.v3i1.2984.

S. N. Wahyuni, N. N. Khanom, and Y. Astuti, “K-Means Algorithm Analysis for Election Cluster Prediction,” Int. J. Informatics Vis., vol. 7, no. 1, 2023, doi: 10.30630/joiv.7.1.1107.

H. Nopriandi and F. Haswan, “Analisis Klasterisasi Mahasiswa Baru dalam Memilih Program Studi dengan Menggunakan Algoritma K-Means,” J. Inf. Syst. Res., vol. 3, no. 4, 2022, doi: 10.47065/josh.v3i4.1986.

R. Muliono and Z. Sembiring, “Data Mining Clustering Menggunakan Algoritma K-Means Untuk Klasterisasi Tingkat Tridarma Pengajaran Dosen,” CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 2, 2019.




DOI: http://dx.doi.org/10.30998/faktorexacta.v16i4.20852

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index