Clustering Indonesian Provinces on Prevalence of Stunting Toddlers Using Agglomerative Hierarchical Clustering

Septian Wulandari(1*)

(1) Universitas Indraprasta PGRI
(*) Corresponding Author

Abstract


Stunting is a chronic nutritional problem caused by a lack of nutritional intake in toddlers. Indonesia is the 5th country with the highest cases of toddler nutrition experiencing stunting at 30.8% in 2018. The current problem, in Indonesia, is providing complete immunization and fulfilling child nutrition in each province is still low. Data obtained from 2018 to 2022 still toddlers who are malnourished and obese and there is no province grouping based on characteristics such as malnutrition, obesity, short toddlers, and complete basic immunization. Clustering is grouping objects into a group so that one cluster contains objects that are similar and different from other objects in other clusters. The agglomerative hierarchical clustering method can classify provinces based on the characteristics that cause stunting so that it can be used as a basis for early prevention for the Indonesian government to tackle stunting and can reduce stunting growth rates which continue to increase and can experience a decline. The agglomerative hierarchical clustering method used is the Average Linkage and Ward's algorithms with the data used is the prevalence of stunting taken in 34 provinces in Indonesia with 11 data attributes. The results of this study are that there are two clusters, namely Cluster 1 which has a relatively high prevalence of stunting with members of 13 provinces, and Cluster 2 which has a relatively low prevalence of stunting with members of 21 provinces. The highest cophenetic correlation value is in Ward's algorithm with a value of 0.8399978. So, it can be said that Ward's algorithm is better than the Average Linkage algorithm in clustering provinces in Indonesia on the prevalence of stunting toddlers.

Full Text:

PDF (Indonesian)

References


M. Rizky Anggraeni and U. Yudatama, “JURNAL MEDIA INFORMATIKA BUDIDARMA Clustering Prevalensi Stunting Balita Menggunakan Agglomerative Hierarchical Clustering,” 2023, doi: 10.30865/mib.v7i1.5501.

Kinanti Rahmadhita, “Permasalahan Stunting dan Pencegahannya Stunting Problems and Prevention,” Jurnal Ilmiah Husada, vol. 11, no. 1, pp. 225–229, 2020, doi: 10.35816/jiskh.v10i2.253.

M. Rizky Anggraeni and U. Yudatama, “JURNAL MEDIA INFORMATIKA BUDIDARMA Clustering Prevalensi Stunting Balita Menggunakan Agglomerative Hierarchical Clustering,” 2023, doi: 10.30865/mib.v7i1.5501.

F. Mahanani Mulyaningrum and M. Mulya Susanti, “FAKTOR-FAKTOR YANG MEMPENGARUHI STUNTING PADA BALITA DI KABUPATEN GROBOGAN,” Jurnal Keperawatan dan Kesehatan Masyarakat, vol. 10, no. 1, pp. 74–84, 2021.

M. W. D. R. N. R. , A. U. N. W. M. Zainul Rahman, “ANALISIS KEBIJAKAN PENCEGAHAN STUNTING DAN RELEVANSI PENERAPAN DI MASYARAKAT (Studi Kasus: Desa Donowarih),” Karta Raharja, vol. 2, no. 1, pp. 27–33, 2021.

S. Wulandari, “CLUSTERING KECAMATAN DI KOTA BANDUNG BERDASARKAN INDIKATOR JUMLAH PENDUDUK DENGAN MENGGUNAKAN ALGORITMA K-MEANS,” in Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK) 2020, 2020.

Fithriyah Azzahrah, S. Annas, and Z. Rais, “Hybrid Hierarchical Clustering dalam Pengelompokan Daerah Rawan Bencana Tanah Longsor di Sulawesi Selatan,” VARIANSI: Journal of Statistics and Its application on Teaching and Research, vol. 4, no. 3, pp. 153–161, Dec. 2022, doi: 10.35580/variansiunm38.

R. P. Justitia, N. Hidayat, and E. Santoso, “Implementasi Metode Agglomerative Hierarchical Clustering Pada Segmentasi Pelanggan Barbershop (Studi Kasus : RichDjoe Barbershop Malang),” 2021. [Online]. Available: http://j-ptiik.ub.ac.id

M. Paramadina, S. Sudarmin, and M. K. Aidid, “Perbandingan Analisis Cluster Metode Average Linkage dan Metode Ward (Kasus: IPM Provinsi Sulawesi Selatan),” VARIANSI: Journal of Statistics and Its application on Teaching and Research, vol. 1, no. 2, p. 22, Jul. 2019, doi: 10.35580/variansiunm9357.

D. Widyadhana, R. B. Hastuti, I. Kharisudin, and F. Fauzi, “Perbandingan Analisis Klaster K-Means dan Average Linkage untuk Pengklasteran Kemiskinan di Provinsi Jawa Tengah,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 4, pp. 584–594, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

M. Rais Ridwan and H. Retnawati, “Numerical: Jurnal Matematika dan Pendidikan Matematika Application of Cluster Analysis Using Agglomerative Method,” Numerical: Jurnal Matematika dan Pendidikan Matematika, vol. 5, no. 1, pp. 33–48, 2021, doi: 10.25217/numerical.v5i1.1358.

R. A. Prabowo et al., “Simulasi Pemilihan Metode Analisis Cluster Hirarki Agglomerative Terbaik Antara Average Linkage Dan Ward Pada Data Yang Mengandung Masalah Multikolinearitas,” 2020.

A. F. Dewi and K. Ahadiyah, “Agglomerative Hierarchy Clustering Pada Penentuan Kelompok Kabupaten/Kota di Jawa Timur Berdasarkan Indikator Pendidikan,” Zeta - Math Journal, vol. 7, no. 2, pp. 57–63, Nov. 2022, doi: 10.31102/zeta.2022.7.2.57-63.

A. Sauddin, “Analisis Faktor-Faktor yang Mempengaruhi Kepatuhan Wajib Pajak Orang Pribadi dalam Memenuhi Kewajiban Membayar Pajak Kendaraan Bermotor (PKB).”

S. Hanada et al., “Penggunaan Analisis Cluster dalam Pengelompokan Kecamatan di Kabupaten Karawang Berdasarkan Metode Kontrasepsi Peserta KB Aktif,” in Prosiding Statistika, 2021, pp. 42–29. doi: 10.29313/.v7i1.25510.

R. Hidayati, A. Zubair, A. Hidayat Pratama, L. Indana, P. Studi Sistem Informasi, and F. Teknologi Informasi, “Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering Silhouette Coefficient Analysis in 6 Measuring Distances of K-Means Clustering,” 2021.




DOI: http://dx.doi.org/10.30998/faktorexacta.v16i2.17186

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index