Konfigurasi Hyperparameter Long Short Term Memory untuk Optimalisasi Prediksi Penjualan

Ali Khumaidi(1), Dhistianti Mei Rahmawan Tari(2), Nuke L. Chusna(3*)

(1) Universitas Krisnadwipayana
(2) Universitas Krisnadwipayana
(3) Universitas Krisnadwipayana
(*) Corresponding Author

Abstract


To support business development and competition, forecasting capabilities with good accuracy are required. PT. Sumber Prima Inti Motor does not want the customer's spare part needs not to be available when ordered, therefore an appropriate procurement and sales forecasting strategy is needed. Long Short Term Memory (LSTM) is a fairly good algorithm for forecasting, in this study using LSTM to predict sales of spare parts for the next 60 days. The CRISP-DM method is used and to obtain optimal model performance, hyperparameter configuration is performed. The configurations used are number of hidden layers, data partition, epoch, batch size, and dropout scenario. The best results from the LSTM model hyperparameter configuration are 3 hidden layers, 3 dropouts, epoch 150, and batch size 30. The performance of the training and testing models with RMSE is 0.0855 and 0.0846.

Full Text:

PDF (Indonesian)

References


R. M. van Steenbergen and M. R. K. Mes, “Forecasting demand profiles of new products,” Decis. Support Syst., vol. 139, p. 113401, Dec. 2020, doi: 10.1016/j.dss.2020.113401.

L. R. Berry, P. Helman, and M. West, “Probabilistic forecasting of heterogeneous consumer transaction–sales time series,” Int. J. Forecast., vol. 36, no. 2, pp. 552–569, Apr. 2020, doi: 10.1016/j.ijforecast.2019.07.007.

H. Abbasimehr, M. Shabani, and M. Yousefi, “An optimized model using LSTM network for demand forecasting,” Comput. Ind. Eng., vol. 143, p. 106435, May 2020, doi: 10.1016/j.cie.2020.106435.

L. Liang and X. Cai, “Forecasting peer-to-peer platform default rate with LSTM neural network,” Electron. Commer. Res. Appl., vol. 43, p. 100997, Sep. 2020, doi: 10.1016/j.elerap.2020.100997.

K. M. Sabu and T. K. M. Kumar, “Predictive analytics in Agriculture: Forecasting prices of Arecanuts in Kerala,” Procedia Comput. Sci., vol. 171, pp. 699–708, 2020, doi: 10.1016/j.procs.2020.04.076.

S. Muzaffar and A. Afshari, “Short-Term Load Forecasts Using LSTM Networks,” Energy Procedia, vol. 158, pp. 2922–2927, Feb. 2019, doi: 10.1016/j.egypro.2019.01.952.

M. Sarkar and A. De Bruyn, “LSTM Response Models for Direct Marketing Analytics: Replacing Feature Engineering with Deep Learning,” J. Interact. Mark., vol. 53, pp. 80–95, Feb. 2021, doi: 10.1016/j.intmar.2020.07.002.

S. Helmini, N. Jihan, M. Jayasinghe, and S. Perera, “Sales forecasting using multivariate long short term memorynetwork models,” PeerJ Prepr., vol. 7, pp. 1–16, 2019, doi: https://doi.org/10.7287/peerj.preprints.27712v1.

A. Khumaidi, “Data Mining For Predicting The Amount Of Coffee Production Using CRISP-DM Method,” J. Techno Nusa Mandiri, vol. 17, no. 1, pp. 1–8, Feb. 2020, doi: 10.33480/techno.v17i1.1240.

R. Nisbet, G. Miner, and K. Yale, “A Data Preparation Cookbook,” in Handbook of Statistical Analysis and Data Mining Applications, Elsevier, 2018, pp. 727–740.

R. Indrakumari, T. Poongodi, and S. R. Jena, “Heart Disease Prediction using Exploratory Data Analysis,” Procedia Comput. Sci., vol. 173, pp. 130–139, 2020, doi: 10.1016/j.procs.2020.06.017.

W. Li, B. Wang, J. Liu, G. Zhang, and J. Wang, “IGBT aging monitoring and remaining lifetime prediction based on long short-term memory (LSTM) networks,” Microelectron. Reliab., vol. 114, p. 113902, Nov. 2020, doi: 10.1016/j.microrel.2020.113902.

C. Panem, V. R. Gad, and R. S. Gad, “Sensor’s data transmission with BPSK using LDPC (Min-Sum) error corrections over MIMO channel: Analysis over RMSE and BER,” Mater. Today Proc., vol. 27, pp. 571–575, 2020, doi: 10.1016/j.matpr.2019.12.039.

S. Lightstone, T. Teorey, and T. Nadeau, “Denormalization,” in Physical Database Design, Elsevier, 2007, pp. 337–355.

D. Singh and B. Singh, “Investigating the impact of data normalization on classification performance,” Appl. Soft Comput., vol. 97, p. 105524, Dec. 2020, doi: 10.1016/j.asoc.2019.105524.




DOI: http://dx.doi.org/10.30998/faktorexacta.v15i4.15286

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index