Model Machine Learning Klasifikasi Data Sekolah TK Berdasarkan Status dan Kabupaten
(1) Universitas Indraprasta PGRI
(2) 
(*) Corresponding Author
Abstract
Full Text:
PDF (Indonesian)References
S. J. Russell and P. Norvig, Artificial Intelligence (A Modern Approach ThirdEdition Stuart), vol. 48. 2016.
S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms, vol. 9781107057. 2013.
R. Verganti, L. Vendraminelli, and M. Iansiti, “Innovation and Design in the Age of Artificial Intelligence,” J. Prod. Innov. Manag., vol. 37, no. 3, pp. 212–227, 2020.
Y. Jin, H. Wang, and C. Sun, “Introduction to Machine Learning,” in Studies in Computational Intelligence, vol. 975, 2021, pp. 103–145.
S. Vieira, W. H. Lopez Pinaya, and A. Mechelli, “Introduction to machine learning,” in Machine Learning: Methods and Applications to Brain Disorders, 2019, pp. 1–20.
O. Pentakalos, “Introduction to machine learning,” in CMG IMPACT 2019, 2019.
N. A. Parasa, J. V. Namgiri, S. N. Mohanty, and J. K. Dash, “Introduction to Unsupervised Learning in Bioinformatics,” in Data Analytics in Bioinformatics, 2021, pp. 35–49.
A. Ng, Clustering - Unsupervised Learning Introduction. 2021, pp. 209–218.
S. Ullman, T. Poggio, D. Harari, D. Zysman, and D. Seibert, “9.54 Class 13 Unsupervised learning Clustering,” Unsupervised Learn. Slides, p. 54, 2014.
G. Hicham, Y. Abdallah, and B. Mostapha, “Introduction of the weight edition errors in the Levenshtein distance,” Int. J. Adv. Res. Artif. Intell., vol. 1, no. 5, 2012.
F. Indriyani and E. Irfiani, “Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means (Clustering Sales Data at Outdoor Equipment Stores Using KMeans Method),” JUITA J. Inform., vol. 7, no. 2, pp. 109–113, 2019.
M. Chau, R. Cheng, B. Kao, and J. Ng, “Uncertain data mining: An example in clustering location data,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2006, vol. 3918 LNAI, pp. 199–204.
K. Fatmawati and A. P. Windarto, “DATA MINING: PENERAPAN RAPIDMINER DENGAN K-MEANS CLUSTER PADA DAERAH TERJANGKIT DEMAM BERDARAH DENGUE (DBD) BERDASARKAN PROVINSI,” Comput. Eng. Sci. Syst. J., vol. 3, no. 2, p. 173, 2018.
P. Novianti, D. Setyorini, and U. Rafflesia, “K-means cluster analysis in earthquake epicenter clustering,” Int. J. Adv. Intell. Informatics, vol. 3, no. 2, pp. 81–89, 2017.
M. H. Adiya and Y. Desnelita, “Jurnal Nasional Teknologi dan Sistem Informasi Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,” Nas. Teknol. dan Sist. Inf., vol. 01, pp. 17–24, 2019.
S. Ghosal, R. Bhattacharyya, and M. Majumder, “Impact of complete lockdown on total infection and death rates: A hierarchical cluster analysis,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 4, pp. 707–711, 2020.
A. Nastuti and S. Z. Harahap, “TEKNIK DATA MINING UNTUK PENENTUAN PAKET HEMAT SEMBAKO DAN KEBUTUHAN HARIAN DENGAN MENGGUNAKAN ALGORITMA FP-GROWTH (STUDI KASUS DI ULFAMART LUBUK ALUNG),” J. Inform., vol. 7, no. 3, pp. 111–119, 2019.
N. Nidheesh, K. A. Abdul Nazeer, and P. M. Ameer, “An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data,” Comput. Biol. Med., vol. 91, pp. 213–221, 2017.
DOI: http://dx.doi.org/10.30998/faktorexacta.v15i2.13211
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.