Pengembangan Model RNN untuk Prediksi Produksi Daging Sapi dalam Perencanaan Pembangunan Nasional
(1) Universitas Indraprasta PGRI
(2) Universitas Indraprasta PGRI
(3) Universitas Indraprasta PGRI
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Direktorat Jenderal Peternakan dan Kesehatan Hewan, Statistik Peternakan dan Kesehatan Hewan 2018/ Livestock and Animal Health Statistics 2018. 2018.
S. Rusdiana, “Fenomena Kebutuhan Pangan Asal Daging Dapat Dipenuhi Melalui Peningkatan Usaha Sapi Potong Di Petani,” SOCA J. Sos. Ekon. Pertan., vol. 13, no. 1, p. 61, 2019.
N. Ilham, “Kebijakan Pengendalian Harga Daging Sapi Nasional,” Kebijak. Pengendali. Harga Daging Sapi Nas., vol. 7, no. 3, pp. 211–221, 2016.
A. A. Rizal and S. Hartati, “PREDIKSI KUNJUNGAN WISATAWAN DENGAN RECURRENT NEURAL NETWORK EXTENDED KALMAN FILTER Program Studi Informatika , STMIK Bumigora Mataram Jurusan Ilmu Komputer dan Elektronika , FMIPA UGM , Yogyakarta,” vol. X, no. 1, pp. 7–18, 2017.
A. Mali, A. Ororbia, D. Kifer, and C. L. Giles, “Recognizing Long Grammatical Sequences Using Recurrent Networks Augmented With An External Differentiable Stack,” 2020.
D. Lee et al., “Long short-term memory recurrent neural network-based acoustic model using connectionist temporal classification on a large-scale training corpus,” China Commun., vol. 14, no. 9, pp. 23–31, 2017.
T. Mikolov, M. Karafiát, L. Burget, C. Jan, and S. Khudanpur, “Recurrent neural network based language model,” Proc. 11th Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH 2010, no. September, pp. 1045–1048, 2010.
F. A. Gers and J. Schmidhuber, “LSTM recurrent networks learn simple context-free and context-sensitive languages,” IEEE Trans. Neural Networks, vol. 12, no. 6, pp. 1333–1340, 2001.
A. A. Rizal and S. Soraya, “Multi Time Steps Prediction Dengan Recurrent Neural,” vol. 18, no. 1, pp. 115–124, 2018.
Machinelearningmastery.com, “No Title.” [Online]. Available: https://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/.
E. C. Djamal, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,” Semin. Nas. Apl. Teknol. Inf. 2019, p. A-33-A-38, 2019.
R. C. Staudemeyer and E. R. Morris, “Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks,” no. September, 2019.
DOI: http://dx.doi.org/10.30998/faktorexacta.v15i3.12820
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.