Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear
(1) (Scopus ID:57205060572) Universitas Indraprasta PGRI
(2) IPB University
(3) IPB University
(4) IPB University
(*) Corresponding Author
Abstract
Full Text:
PDF (Indonesian)References
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I and F., “Global Cancer Observatory: Cancer Today.,” International Agency for Research on Cancer. 2018.
Rahaman Md, Li C, Wu X, Yao Y, Hu Z, Jiang T, Li X, “A Survey for Cervical Cytopathology Image Analysis Using Deep Learning.,” IEEE Acces, 2020, doi:10.1109/ACCESS.2020.2983186.
Akbar H, Sandfreni. “Klasifikasi Kanker Serviks Menggunakan Model Convolutional Neural Network (Alexnet).,” J. Inform. dan Komputer., 2021, doi: 10.33387/jiko.
Badan Penyelenggara Jaminan Sosial Kesehatan Republik Indonesia. 2021.( https://bpjs-kesehatan.go.id/bpjs/index.php/post/read/2014/262/Jangan-Khawatir-BPJS-Kesehatan-Menjamin-Deteksi-Sebelum-Kanker-Serviks-Menyerang/berita)
Kurniawan R, Sasmito Kartikaning DE, Suryani F “Klasifikasi Sel Serviks Menggunakan Analisis Fitur Nuclei pada Citra Pap Smear.,” 2013. Seminar Nasional Informatika Medis (SNIMed) IV.
Plissiti M, Dimitrakopoulos P, Sfikas G, Nikou C, Krikoni O, “Sipakmed: A New Dataset for Feature and Image Based Classification of Normal and Pathological Cervical Cells in Pap Smear Images.,” pp. 3144-3148., 2018, doi: 10.1109/ICIP.2018.8451588.
Q. Liao, Y. Ding, Z. L. Jiang, X. Wang, C. Zhang, and Q. Zhang, “Multi-task deep convolutional neural network for cancer diagnosis,” Neurocomputing, vol. 348, pp. 66–73, 2019, doi: 10.1016/j.neucom.2018.06.084.
Agrawal H, Kalantri M, “Comparative Analysis of different Convolutional NeuralNetwork Algorithm for Image Classification.,” ISRAJET., vol. 8(9)., 2020.
Suyanto, Machine Learning Tingkat Dasar dan Lanjut. Bandung: Penerbit Informatika., 2018.
“Convolutional neural network". https://en.wikipedia.org/wiki/Convolutional_neural_network
He, K., Zhang, X., Ren, S., & Sun, “Deep Residual Learning for Image Recognition Kaiming.,” IIEE, vol. 32(5), 428, 2015, https://doi.org/10.1246/cl.2003.428.
M. Soh, “Learning CNN-LSTM Architectures for Image Caption Generation. Nips, (c), 1–9.,” 2016. https://cs224d.stanford.edu/reports/msoh.pdf.
P. Arnav, A., Jang, H., & Maloo, Image Captioning Using Deep Learning. 2017.
A. Primawati, I. Mutia, “Analisis Klasifikasi Populasi Ternak Kambing dan Domba dengan Model Convolutional Neural Network,” Fakt. Exacta, vol. 14, no. 1, pp. 22–33, 2021, [Online]. Available: http://journal.lppmunindra.ac.id/index.php/Faktor_Exacta.
Aneja, J., Deshpande, A., & Schwing, “Convolutional Image Captioning. Proceedings,” 2018, https://doi.org/10.1109/CVPR.2018.00583.
“ResNet." https://pytorch.org/hub/pytorch_vision_resnet/.
S. Das, “CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more,” [Online]. Available: https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5.
O'Shea K, Nash R. An Introduction to Convolutional Neural Networks. ArXiv e-prints., 2015.
Arel I, Rose D C, “Deep machine learning-a new frontier in artificial intelligence research [research frontier].,” IEEE Comput. Intell. Mag., vol. 5(4): 13–1, 2010.
“SIPaKMeD Database,” [Online]. Available: https://www.cs.uoi.gr/~marina/sipakmed.html.
DOI: http://dx.doi.org/10.30998/faktorexacta.v14i3.10010
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.