Perbandingan Algoritma SVM dan KNN dalam Mengklasifikasi Kelulusan Mahasiswa pada Suatu Mata Kuliah
(1) 
(*) Corresponding Author
Abstract
Two different algorithms will use different approaches. Like KNN (K-Nearest Neighbour) and SVM (Support Vector Machine), with the former calculates the closest distance between two instances, while the latter calculates the existence of hyperplane that separates two resulted classes. By using train data consisting of anomaly or noise data and using real measurement normally given by a lecturer to the students in the class to determine the students’ pass or fail in one subject, the research finds the difference between the two algorithms. The research is conducted in the University of XYZ on IIT (Introduction to Information Technology) subject. With the use of Orange Data Mining software, the research aims to give information about the suited algorithm for prediction or classification of student’s success in a related subject or others. It uses quantitative analysis with KNN dan SVM algorithms methods. Based on an assessment of several parameters, KNN is better than SVM, but SVM is better than KNN in obtaining a passing threshold value.
Keywords
Full Text:
PDFReferences
M. Kubat, “An Introduction to Machine Learning,” An Introduction to Machine Learning. Springer International Publishing., pp. 1–348, 2017.
A. Hertzmann and D. Fleet, “Machine Learning and Data Mining,” 2012, p. 134.
E. Alpaydin, “Introduction to Machine Learning, Second Edition,” no. September. The Massachusetts Institute of Technology Press., 2010.
A. M. Ismail, “Cara Kerja Algoritma k-Nearest Neighbour.” , 2018. [Online]. Available: https://medium.com/bee-solution-partners/cara-kerja-algoritma-k-nearest-neighbor-k-nn-389297de543e
N. Deng, Y. Tian, and C. Zang, “Support vector machines (SVM): Optimization Based Theory, Algorithms and Extension.” CRC Press,Taylor & Francis Group, 2013.
F. S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 1, no. 1. p. 19, 2017.
S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” Jurnal Tekno Insentif, vol. 13, no. 1. pp. 16–25, 2019.
R. Arifin, “Memahami ROC dan AUC,” 2019. [Online]. Available: https://medium.com/@arifinrio95/memahami-roc-dan-auc-2e0e4f3638bf.
C. R. Kothari, Research Methodology, Methods & Techniques, Second Rev. New Age International (P) Ltd., 2004.
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” Jurnal Informatika, vol. 6, no. 2. pp. 226–235, 2019.
S. Aulia, S. Hadiyoso, and D. N. Ramadan, “Analisis Perbandingan KNN dengan SVM untuk Klasifikasi Penyakit Diabetes Retinopati berdasarkan Citra Eksudat dan Mikroaneurisma,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 3, no. 1. p. 75.
DOI: http://dx.doi.org/10.30998/string.v6i2.9160
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Shedriko Shedriko
This work is licensed under a Creative Commons Attribution 4.0 International License.
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats