Diagnosa Tingkat Depresi Mahasiswa Selama Masa Pandemi Covid-19 Menggunakan Algoritma Random Forest

Dewi Septiani(1*), Ultach Enri(2), Nina Sulistiyowati(3)

(1) 
(2) Universitas Singaperbangsa Karawang
(3) Universitas Singaperbangsa Karawang
(*) Corresponding Author

Abstract


Covid-19  virus has become a pandemic across the world, including Indonesia. Based on the data from the Covid-19 Handling Officer Unit, the number of Covid-19 sufferers in Indonesia until February 15, 2021 reaches 1.2 million people. The number of daily cases that continues to grow has forced the government to enforce policies to work, study, and worship from home to minimize the Covid-19 transmission. The policy and many Covid-19 sufferers Indonesia affect the mental health of people, including students of Singaperbangsa Karawang University. Therefore, this research aims to diagnose the initial level of depression in students of Singaperbangsa Karawang University during Covid-19 pandemic by using data mining with Random Forest algorithm. The method used in this research is KDD (Knowledge Discovery in Database) with data used come from PHQ-9 questionnaire given to 392 respondents according to calculation of Slovin formula. Evaluation model used is 10-fold cross validation, with accuracy, sensitivity and specificity parameters. The results of the research show the depression level prediction model using Random Forest algorithm has an accuracy of 85.94%. From 392 students, 1.02% of students are normal, 47.96% have mild depressive symptoms, 36.73% have mild depression, 8.16% have moderate depression, and 6.12% have major depression.


Keywords


Data Mining, Depresi, Prediksi, PHQ-9, Random Forest

Full Text:

PDF

References


WHO, “QA For Publik,” World Health Organization, 2020. https://www.who.int/indonesia/news/novel-coronavirus/qa/qa-for-public (accessed Feb. 25, 2021).

D. F. Nisa and N. K. Putri, “Bagaimana Wabah Virus Corona Mempengaruhi Kehidupan Mahasiswa? How Is The Coronavirus Outbreak Affecting The Daily Lives Of University?,” ResearchGate, pp. 1–18, 2020, doi: 10.13140/RG.2.2.24215.19363.

PDSKJI, “Masalah Psikologis Di Era Pandemi Covid-19,” Perhimpunan Dokter Spesialis Kesehatan Jiwa Indonesia (PDSKJI), 2020. http://www.pdskji.org/home.

I. P. Jha, R. Awasthi, A. Kumar, V. Kumar, and T. Sethi, “Explainable-Machine-Learning To Discover Drivers And To Predict Mental Illness During Covid-19,” MedRxiv, 2020, doi: 10.1101/2020.07.19.20157164.

A. Santoso et al., “Tingkat Depresi Mahasiswa Keperawatan di Tengah Wabah Covid-19,” HNHS, vol. 3, no. 1, pp. 1–8, 2020.

U. Hasanah, N. L. Fitri1, Supardi, and L. PH, “Depresi Pada Mahasiswa Selama Masa Pandemi Covid-19,” J. Keperawatan Jiwa, vol. 8, no. 4, pp. 421–424, 2020.

S. Sawangarreerak and P. Thanathamathee, “Random Forest with Sampling Techniques for Handling Imbalanced Prediction of University Student Depression,” information, pp. 1–13, 2020, doi: 10.3390/info11110519.

R. Ahuja and A. Banga, “Mental Stress Detection In University Students Using ML Algorithms,” Elsevier, pp. 349–353, 2019, doi: 10.1016/j.procs.2019.05.007.

C. Gonçalves, D. Ferreira, C. Neto, A. Abelha, and J. Machado, “Prediction of Mental Illness Associated with unemployment using Data Mining,” Elsevier, pp. 556–561, 2020, doi: 10.1016/j.procs.2020.10.078.

B. Levis, A. Benedetti, and B. D. Thombs, “Accuracy Of Patient Health Questionnaire-9 (PHQ-9) For Screening To Detect Major Depression: Individual Participant Data Meta-Analysis,” BMJ, pp. 1–11, 2019, doi: 10.1136/bmj.l1476.

C. P. Nolan et al., “Depression Screening In HIV-Positive Tanzanian Adults: Comparing The PHQ-2, PHQ-9 And WHO-5 Questionnaires,” Glob. Ment. Heal., pp. 1–8, 2018, doi: 10.1017/gmh.2018.31.

D. Bestari, “Efektivitas Kuesioner PHQ-9 Sebagai Skrining Deteksi Dini Depresi,” Alomedika, 2021. https://www.alomedika.com/ efektivitas-kuesioner-ph-9-sebagai-skrining-deteksi-dini-depresi.

PDDikti, “Pelaporan Periode 2019/2020 Ganjil,” PDDikti Kemdikbud, 2021. https://pddikti.kemdikbud.go.id/ data_pt/QzRENDE1QjMtOTgyRS00MDM0LUIyOUEtRUU5NDA4MDY4MUEw.

W. A. Fahrudin, “Balance Scorecard Untuk Menentukan Key Performance Indicator Di Pt Mulia Artha Anugerah,” JITMI, vol. 3, no. 1, pp. 15–23, 2020.

K. A. Sambodo, M. I. Rahayu, N. Indriasari, and M.Natsir, “Klasifikasi Hutan-Non Hutan Data Alos Palsar Menggunakan Metode Random Forest,” Semin. Nas. Penginderaan Jauh 2014, pp. 120–127, 2014.

T. Purwa, “Perbandingan Metode Regresi Logistik dan Random Forest untuk Klasifikasi Data Imbalanced (Studi Kasus: Klasifikasi Rumah Tangga Miskin di Kabupaten Karangasem, Bali Tahun 2017),” JMSK, vol. 16, no. 1, pp. 58–73, 2017, doi: 10.20956/jmsk.v16i1.6494.




DOI: http://dx.doi.org/10.30998/string.v6i2.10361

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Dewi Septiani, Ultach Enri, Nina Sulistiyowati

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

STRING (Satuan Tulisan Riset dan Inovasi Teknologi) indexed by:



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats

Flag Counter