

SCOPE

Journal of English Language Teaching

| p-ISSN 2541-0326 | e-ISSN 2541-0334 | https://journal.lppmunindra.ac.id/index.php/SCOPE/

Research Article

Moodle-Based Flipped Learning-Model to Increase Basic Translation Skills and 21st Century Skills

Andri Purwanto^{1*}, Yumna Rasyid², Miftahulkhairah Anwar³, Ilza Mayuni⁴

- 1) Universitas Indraprasta PGRI, Jakarta, Indonesia
- ²⁾ Universitas Negeri Jakarta
- ^{3,4)} Universitas Negeri Jakarta, Jakarta, Indonesia

KEYWORDS

Basic Translation Skills; Learning Management Systems-Moodle; Flipped Learning Model; General English Language Proficiency.

CORRESPONDING AUTHOR(S):

E-mail: ¹andri.purwanto@unindra.ac.id*
²yumna.rasyid@unj.ac.id;
³miftahul.khairah@unj.ac.id;
⁴ilza.mayuni@unj.ac.id

ABSTRACT

Developing Moodle-based flipped learning model and integrating it with collaborative i-tool SmartCAT is one of the greatest challenges in Translation courses. Product validation is carried out by translation, Flipped Learning, instructional design and Learning Management System experts. To obtain expert consensus regarding the validity of the developed hypothetical model, the Delphi technique is used, namely the conclusion of the results of various expert opinions that are collected, searched for points of similarity, and summarized so that it becomes a common consensus. The consensus of experts includes the following aspects: 1) identification of problems through needs analysis, 2) priority determination, namely determining the type and manufacture of the product, 3) determining program objectives, and 4) determining solutions to solve problems. The next stage is to try it out on 10 lecturers and 60 students in the Translation course in the English Education Study Program. This trial was used to determine the impact of Flipped Learning and the subject's perception of the application of the product in a lecture activity. The conclusion of the consensus results of the validity of the experts and the perception of the subject in this study were analyzed by the percentage method, while the determination of the impact of learning with the average difference test of the subject's value. This research is expected to have a positive impact on Moodle-based Flipped Learning through the developed product, which can significantly improve students' Basic Translation Skills and Twenty-First Century Skills.

INTRODUCTION

During the global pandemic COVID-19, the teaching-learning process has changed 1800 from conventional class into a virtual class whether it is synchronous or a synchronous learning. Learning management systems (LMS) is initiated a few months just after the global

pandemic COVID-19 had started to spread in March 2020. Totally, the education institutions have to stop face-to face learning and change it into a virtual one. The LMSs are suddenly employed by many educational institutions in order to support teaching-learning process. This includes the use of digital technology in teaching, such as using google forms for online test, ZOOM Cloud meeting for group presentation, Padlet for project display. It is

important to find solutions in order to run an effective virtual classroom in delivering materials to students so this will improve the quality of teaching-learning process and learning outcomes. This study focuses on LMS-based Flipped Learning Model with the aim of increasing Basic Translation Skills and 21st Century Skills and engaging students in active and deep learning.

There are so many free digital platforms in order to support smart learning which uses modern technology with the aim of combining the constructivist and ubiquitous learning. This model of learning is a student-centered platform by adapting technology usage with educational interests. Personal and smart technologies make students more independent, more open and better connected with their learning. Smart Learning stands for Self-directed, Motivated, Adaptive, Resource-enriched and Technology-embedded Learning according to MEST (The Korean Ministry of Education, Science and Technology). S.M.A.R.T Learning promoted by Korean government is as follows (Kim, Cho, and Lee, 2013):

- 1. S stands for Self-directed Learning which means that the education system is progressing towards a self-learning system than ever before. Students are no longer knowledge-adopters but knowledge-creators. The position of teachers is a facilitator of learning.
- M stands for Motivated-Learning which means education is an experience-centered learning and modified with learning by doing, creative problem solving and personal assessment.
- A stands for Adaptive Learning which means strengthening educational system flexibility and designing learning for individual preference and future careers.
- 4. R stands for Resource-enriched Learning which means education is a rich content based on open-source market and cloud education services from both public and private sectors. And it also includes collective intelligence and social learning for broader learning resources.
- T stands for Technology-embedded Learning which means that education is in one single smart application that can be accessed anywhere, anytime and just by a single click of your finger-tip.

The smart learning environment is transitioning from the use of smart devices to virtual reality and augmented reality so the government, academia and research industry aim to find possible ways to construct an educational environment using high quality content with affordable rates.

Figure 1. SMART Educational Environment

Moddle-based flipped learning model has generated considerable interest in higher education in recent years, some experimental research on this study is still limited. According to Nouri (2016), Wang, et. al. (2019), McLaughlin et al. (2014), Tan, Yue, and Fu, (2017), Lai and Hwang, (2016), flipped learning is well-organized learning mode that makes teaching-learning practice and interaction effective among teachers and students in digital classroom and traditional classroom. The novelty of this study is integrating moodle with flipped learning mode in order to design learning scenario by applying basic translation skills and twenty-first century skills on the translation handbook. This research is a research and development method that has some general obhjectives, namely: to design Moodle-based flipped learning model to increase basic translation skills and twenty-first century skills for university students and to measure the level of effectivity of moodle-based flipped learning model to increase basic translation skills and twenty-first century skills towards university students.

E-learning has an important role in this global pandemic COVID-19 which started from March 2019 until 2020 that hopefully ends soon. SMART Learning gives students and academics a vast opportunity to upgrade and enrich their knowledge through digital platforms and software with which teaching and learning processes runs in virtual learning context at universities and other educational institutions. Learning Management Systems (LMS) is an online educational platform with the aim of enhancing teaching and learning processes. It facilitates both teachers and students for a direct assessment of group discussion and evaluation test that can be accessed anywhere and anytime without time and space limitations. LMSs enable them to host a wide range of online resources, videos and other tools such as message boards.

Alizadeh (2019) mentions that LMSs bring many educational benefits for both students and professors in learning interaction and learning assessment. They express that the digital platform (LMSs) improve their learning,

DOI: http://dx.doi.org/10.30998/scope.v7i1.13891

benefit the professors and upgrade their mutual interaction with the professors. LMSs offer a wonderful file manager, i.e. a collection of students' homework and assignment at anytime and anywhere, so that the professors could check the home work and assignment more easily and simply. The LMSs which are mentioned as a web-based learning construction that delivers and manages course information, learning assessment, learning data collection, learning process monitoring, progress chart has some fundamental features, such as assignment submission, announcement or information, discussions, material and link sharing, content updating, resources and forums (Chang, Huang, and Wu, 2017). According to Kasim and Khalid (2016), LMS can be classified into three: 1) instruction tools; 2) communication tools; 3) productivity tools. Instruction tool is a learning tool which creates activities and assessment for students. These tools facilitate quizzes, online presentation tools and assignments. A quiz module would offer many functions like a question database, a response facility, a marking scheme, and a means of facilitating students' performance. While the online presentation tools make students possible to upload presentation file or send links of presentation video from YouTube to the LMS. The lecturers assign the students the assignment on the LMS and the students could submit or upload the assignment any time till the due date of submission. Communication tools enable the students and lecturers to communicate in the chat box. The most common information broadcasted to students is announcement which shows important notes regarding the course, such as latest news and upcoming activities to all of the students. In the discussion forum, both lecturers and students could post and reply in the comment box and read comments from other users. Moreover, productivity tools in LMS include file manager, calendars, surveys, graphics of participation, score and attendance. The File Management Systems enable lecturers and students to upload and download files from any computer that is connected to internet. And other management tools in LMS are a collection of information on how much students access the LMS and achieve their own performance. Some LMSs allow students to see their final report of the course, such as grades for each assignment, quiz and exam.

Tabel 1. Three smart tools of LMS

Tests of Normality

	Class	Kolmogo	Shapiro-Wilk				
		Statistic	df	Sig.	Statistic	df	Sig.
Experiment	Pre-Test Experiment (FLIP)	.102	30	.200*	.916	30	.021
	Post-Test Experiment (FLIP)	.113	30	.200*	.962	30	.339
	Pre-Test Control (Conventional)	.126	30	.200*	.944	30	.113
Control	Post-Test Control (Conventional)	.151	30	.080	.964	30	.399

^{*.} This is a lower bound of the true significance.

Wang and Chen (2009) mention that there are two kinds of LMS, they are 1) Asynchronous LMS (ALMS) and 2) Synchronous **LMS** (SLMS). **ALMS** (e.g. blackboard/webCT, Moodle, Google Classroom, Talent LMS, Schoology) provides functionalities mainly to support asynchronous learning activities and resources such as learning materials, discussion forums, monthly assessment, group emailing and ZOOM cloud links for synchronous learning. SLMS, such as 3C (Collaborative Cyber Community) that integrates both synchronous and asynchronous tools to support a distance learning education (DLE). This platform facilitates synchronous real-time interaction and collaboration using conferencing tools such as synchronous document sharing, collaborative whiteboard, text chat, audio and video communication.

Tabel 2. Main Features offered by Learning Management Systems (LMS)

Based on the table above, mobile learning management systems makes online learning easy to access and effective with mobile-friendly learning management systems. Todays, 80 percent of Indonesians own a smartphone of some kind, and 94 percent of mobile users communicate through social media compared to 36 percent of mobile users who earn money, learn new things, and do learning and productive activities. Flipped learning model is a flexible approach to course design that supports the flipping of different times and places for learning, offering some of the conveniences of fully online courses without the complete loss of face-to-face contact. The result is a potentially more robust educational experience than either traditional or fully online learning are able to offer. It has been described that such a successful flipped learning model, consisting of an initial face-to-face meeting, followed by weekly online assessments, synchronous chat, asynchronous discussions, e-mail, and a final face-to-face

a. Lilliefors Significance Correction

meeting with a proctored final examination. There are three key factors regarding mobile learning management systems: 1) the instructors, technology (mobile-friendly application) and interactivity; 2) several Moodle Interactive Learning Activities (MILA) modified with

comments and feedbacks from other course users, course management issues, and students' grade report; 3) course websites or course management systems. Mobile LMS is easy to be accessed and more effectively facilitate students' learning, as it is showed in the table below.

Tabel 3. Time spent using Moodle

Descriptive Statistics

							Std.		
	N	Range Minimus		Maximum	Sum	Mean		Deviation	Variance
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic
Pre-test Experiment	30	44.13	35.18	79.31	1947.52	64.9173	1.58931	8.70501	75.777
Post-test Experiment	30	15.12	79.73	94.85	2656.13	88.5377	.66477	3.64110	13.258
Pre-test Control	30	44.33	35.18	79.51	1944.48	64.8160	1.68957	9.25415	85.639
Post-test Control	30	20.04	70.71	90.75	2401.46	80.0487	.97431	5.33653	28.479
Valid N (listwise)	30								

Table 3. Independent Samples t-Test for post-test of experiment class and control class

Independent Samples Test													
	Levene's Test												
	for Equality												
		of Variances				t-test for Equality of Means							
										95% Co	nfidence		
				Inter					Interva	l of the			
			Sig. (2- Mean Std. Error				Diffe	Difference					
			F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper		
Result	Equal	variances	5.606	021	7.107	50	000	0.40000	1 17040	(12700	10.05001		
	assume	d	5.626	.021	7.197	58	.000	8.48900	1.17949	6.12799	10.85001		
	Equal	variances			5 10 5	51 101	000	0.40000	1 170 10	ć 12120	10.05.670		
	not assu	ımed			7.197	51.191	.000	8.48900	1.17949	6.12128	10.85672		

O'Sullivan, Krewer, & Frankl (2017) explain that social software has improved the way students and lecturers share information, such as Facebook, Twitter, Instagram and WhatsApp. They acquire and share the information asynchronously for academic purposes and other nonacademic purposes. But social software is sometimes difficult for delivering a course, especially grading systems, participation graphics, and course management. LMS has been shown to offer some potential to overcome social loafing in Moodle collaborative activity by facilitating students and instructors with transparent usage statistics and rich data analytics to verify levels of student interactions and individual and group contributions. Social interaction among students and instructors is fundamental to cognition and learning process, thus knowledge, concepts, meanings, roles and relationships are constructed and naturally developed through interacting and communicating with others.

Alfadly (2013) mentions that the main objectives of online learning management systems (LMSs) in organizations are to simplify the administration of learning programs and support communication among colleagues. An effective LMS helps to target, deliver, track, analyze, and report the learning "condition" within the organization. University principals and educational administrators often need to decide which system will best suit their specific needs and open channels for communication among the staff. Some researchers have pointed out the prospective benefits of LMS, and many of them automatically keep logs of user activity, both for research and to design practical online learning applications. The present study continues this work, seeking to explore whether the interactivity among teachers can be measured via logs of their activities within LMS. Yuen, Cheng, and Chan (2019) explained that the implementation of flipped learning model through LMS increases user satisfaction and high engagement for both

online and offline class. It means that all students from secondary school (SMP-SMA) to university must have LMS whether in this pandemic period and in normal period.

Joo, Kim, and Kim (2016) state that mobile learning (m-learning) offers a lot of opportunities to enhance students' learning experience and learning acceleration both in formal and informal educational context. The learning flexibility offered by mobile devices makes learning portable and spontaneous of which students experienced more personalized learning, situated learning in a meaningful context and authentic learning with real-world problems. Williams van Rooij (2012) mentions that mobile LMS enhanced learning experience by enabling collaboration, the development of a sense of community, and the inclusion of constructivist strategies of collaborative learning into the instructional environment.

Translation memory (TM) is one tool that allows translators to achieve greater throughput during the translation process via the reuse, reference, and modification of previously human- translated material to complete new translation projects (Mellinger, 2017).

Basic translation skills can be attained in a number of methods, such as practice-based strategies (tasks, projects, portfolios), collaborative classroom and homework practice, situated (vocational) approaches to translation, technology-intensive input, a curriculum-integrated module on professional development, an annual school panel with invited professionals – preferably alumni, a work placement scheme, an innovative approach to final dissertation formats, including an alternative situated, situated, purely professional option (Calvo, 2015). This study suggests four main macro skills for any translator who is new in the field of translations. They are reading comprehension, researching, analytical and composing skill. These macro skills contain many sub or micro skills that need to be learnt. These skills are the results of a needs assessment analysis which was designed by a group linguistic, translation, TEFL, and course design experts in order to consider which one is to be as the basic translation skill.

Reading a text is an act of translation whether it is in foreign language or in mother language. When reading a text, some of the words are familiar with and some others are not, but it can be understood by studying the context, this is what we called mental language. The mental language is syntactical nature when we try to reconstruct the possible meaning of a sentence, i.e. the relation among its elements. In contrast, it is a semantic nature when it identifies the relevant areas within the semantic field of any single word or sentence; and it is a pragmatic nature when

it deals with logical match of possible meaning to the whole context and to the verbal co-text.

Students-lecturers and novice translators are therefore advised to learn the following basic reading comprehension skills, namely: read for a gist and main ideas, read for details, identify the meaning of new words and expressions by using one or more of structural analysis clues; prefixes, suffixes, roots, word order, punctuation, sentence pattern, identify the meaning of new words and expressions by using one or more of structural analysis devices; synonyms, antonyms, examples, identify the style of the writer; whether it is a literary, scientific, technical, informative, persuasive, argumentative text, identify the language level used in the text; standard, slang, religious, and identify cultural references in the choice of words in the text.

When doing the translation, we should refer to a dictionary but there are so many dictionaries that the translator should refer to, such as a bilingual dictionary, a dictionary on ahistorical basis, dictionaries of current English, dictionaries of idioms, specialized dictionaries (dictionaries of common errors, dictionaries of idiomatic usage, dictionaries of slang, dictionaries of law and medical terminology), encyclopedic dictionaries, dictionaries of neologisms, miscellaneous dictionaries, and monolingual dictionaries. This long list of different kinds of dictionaries suggests that it is not a single dictionary that the translator is supposed to refer to and the original text to be translated.

Novice translators as well as student-translators are encouraged to use the following basic researching skills: use bilingual dictionaries for looking up meanings of new words, use monolingual dictionaries to check the usage of the new words in the source language and in the target language, use related encyclopedias and glossary lists for specialized terms, use software dictionaries if necessary and if available, use the internet for researching purposes, and refer to specialized magazines and journals to help familiarizing with the text; particularly when it is a technical one.

The translation process is characterized by an analysis stage and a synthesis stage. During analysis, the translator refers to the protext in order to understand it as fully as possible. The synthesis stage is the one in which the protext is projected onto the reader; that is; onto the idea that the translator thinks of who will be the standard reader of the meta-text. Students are advised to use the analytical skills, such as: identify beginnings and endings of ideas in the text and the relationships between these ideas, identify the 'best' meaning that fit into the context, identify the structure in the target language that 'best' represents the original, and identify transitions between ideas and the

'best' cohesive devices in the target language that represent the original.

In this final stage, the translator has two needs; first, to externalize the set of impressions caused by text perception, translate into speech acts the mental material produced by contact with prototext; second, to make this product coherent within itself, i.e, transform a set of speech acts into a text (meta-text). In this final step, the translator needs to visualize the mental content derived from the first three steps into a written text. These skills were analyzed because it focused on the process of translation, rather than the final product, that gives insights into language learning skills in general.

Students-lecturers are therefore advised to follow these strategies when writing the final version of the translation, namely: use correct word order as followed in the target language, use correct sentence structures as followed in the target language, transmit the ideas of the text in clear ideas in the target language, rephrase certain sentences to qualify for the overall meaning translated, make changes to the text as a whole to give it a sense of the original without distorting the original ideas, as well as try one or more of the following strategies when facing problems of untranslatability (syntactic strategies: shift word order, change clause or sentence structure, and add or change cohesion; semantic strategies: use superordinates, alter the level of abstraction, and redistribute the information over more or fewer elements; and pragmatic strategies: naturalize the bizarre expressions or exoticize the natural ones, alter the level of explicitness and add or omit information).

METHOD

The participants of this study were Translation students(N = 60), males and females, majoring in English education program. They completed an average of six years of secondary school. They had enrolled three classes of speaking, listening and writing in previous semesters while Translation course is in the fifth semester.

The pre-test and post test instruments used in this study is GELP (General English Language Proficiency). This GELP sample test was administered to ensure the participants' level of English proficiency. The test consisted of listening comprehension (50 multiple choices), structure and written expression (40 multiple choices) and reading comprehension (50 multiple choices). According to the university TOEFL score requirement, college students should get aproximately 450 – 500. This GELP test will determine three level of students in language proficiency, i.e. low-scoring students, medium-scoring students and high-scoring students.

This modul was designed to promote students to explore their Basic Translation Skills and optimalize their Twenty-first Century Skills. This module was validated by three professors in Translation, Online Education and Applied Linguistics. This modul was designed for 10 sessions, 2 sessions for pre-test and post-test and the last 2 sessions for opening and closing sessions of Translation project. All participants were measured through statisfaction quisionaire on the using of moodle as a medium of instruction. All sessions lasted for about 90 minutes, and all of the materials and video presentation had been learnt before the session begun.

The instructional materials used in this study included presentation videos, translation materials, online resources (i.e. books, journals and helpful websites). The virtual discussion room was provided in moodle and this interactive activity was recorderd by the system for furher analysis. Before the treatment, the participants were informed about the procedures of data collection, discussion, translation projects were made with with their consent.

Taking a quasi-experimental design, this study included two classes: experimental and control class. It was done over a period of 10 consecutive sessions. In the session, the participants took a General English Language Proficiency (GELP) pre-test and the result of the test determined all the participants into three types of students, they are 1) low scoring students; 2) medium scoring students; and 3) high scoring students. During the next eight sessions, they recieved the modified translation materials, instructional treatment, lesson objectives, interactive videos, online quizzes provided by the lecturers on Moodle wall. During the course, participants worked collaboratively handling translation project using SmartCAT. In the last session, the GELP post-test was administered.

The Moodle instruction in every session had five activities: 1) translation materials; 2) online test or assignment; 3) virtual chat room; 4) virtual meeting; and 5) digital resources. The instruction of each treatment sessions lasted 90 minutes. The lecturer (one of the researchers) sent zoom link to all participants and started the instruction by asking some conciousness-raising questions about the materials posted in Moodle wall. Participants who had a video presentation led others in group discussion in Virtual Chat Room. All participants had already watched the presentation video for 30 minutes before the session and prepared all of the questions and notes for the presenters to revise the materials and improve the presentation. The purpose of virtual discussion was to help learners to identify the realization of translation materials and to reinforce what they learnt remotely through moodle.

The research on the implementation of flipped learning model using moodle to increase students' higher order thinking skills (Mas'ud and Surjono, 2018). This study aims to reveal the differences in the learning achievement based on higher order thinking skills of the students using flipped classroom learning model using moodle media on simulation and digital communication subjects and that of those using the conventional learning model with printed book media. The research method in this study was quasi Experimental design by using non equivalent control group design (pretest, posttest which is not equivalent), that was the distribution of research sample which was intended to know or try to examine the existence of causal relationship by comparing between experimental group that has been given treatment with comparison group that had no treatment. This experimental method was chosen to test the influence of one or more variables on other variables or causal relationships of one or several variables.

RESULTS AND DISCUSSION

To ensure the data meet the assumptions of normality, data screening was conducted. Table 1 shows that the normality test of the pre-test and post-test.

Table 1 Normality Test of the Pre-test and Post-Test.

As shown in Table 1, the data related to performances of the two groups in the pre-test and post-test were normally distributed (p > 0.05). In the following sections, the data were analyzed and the findings were reported in relation to hypoteses.

The descriptive statistics in table 2 show the participants' performances in Basic translation Skills pre-test and post-test. The mean in experiment class has increased from 64.9173 to 88.5377. The mean in the experiment class (mean = 88.5377) is higher than the mean in the control class (mean = 80.0487). It concluded that the training in Basic Translation Skills has significant effect to the students' result in Translation course.

Table 2

Descriptive statistics for the pre-test and the post-test

This course aims to examine how stretches of language, considered in their full textual, social, and psychological context, become meaningful and unified for their users. It provides insights into the problems and processes of language use and language learning, and is therefore of great importance to language teachers. Then, it also aims to explain the theory of discourse analysis and to demonstrate its practical relevance to language learning and teaching. This course is mostly theoretical in which students are engaged in lectures, discussions and literature studies. Assessment is conducted in terms of students'

classroom participation, assignment, and final tests. After this course, the students are expected to understand the scopes of discourse analysis in Translation that will be beneficial in language learning, to be able to analyze language use in a wide range of discourse types, and 3) to know the contribution of discourse analysis in language teaching.

In A Review of Flipped Learning, flipped classrooms can differ in methods and strategies, largely due to the fact that learning focuses on meeting individual student learning needs as opposed to a set methodology with a clear set of rules (key features) that foster learning:

- Flipped Learning requires flexible environments. As inclass activities in a flipped classroom can vary from collaborative group work to independent study to research, educators often rearrange the physical space in a classroom to accommodate these variants.
- 2. Flipped Learning requires a shift in learning culture. Flipped classrooms shift the focus from teacher-led to student-centered learning in order for learners to experience topics in greater depth through active, more meaningful approaches to learning.
- 3. Flipped Learning requires intentional content. Educators evaluate which materials should be presented to students in advance and which content should be taught directly to help students "gain conceptual understanding as well as procedural fluency" through constructivist approaches.
- 4. Flipped Learning requires dedicated, professional educators. The use of the flipped classroom approach, particularly with the presentation of materials through digital media and technologies, is not intended as a replacement for educators. Class time is crucial for the educator to determine if students have, inter alia, gained understanding of a topic.

Figure 1. Form of LMS Login Andri Purwanto, Yumna Rasyid, et. al.

Student-centered method of teaching and learning is based on the constructivist learning theory which takes the position that learners are active in how they interpret information and build meaning and knowledge through prior experiences using observation, problem-solving and processing. Constructivism takes into consideration the influence of content and context in learning to be a truly individual process. It moved away from the more direct, teacher-centered method. Behaviorist theory which critics that learning is an individual process felt lacked a focus for fostering meaningful learning, and placed too little significance on the positive effects of group work.

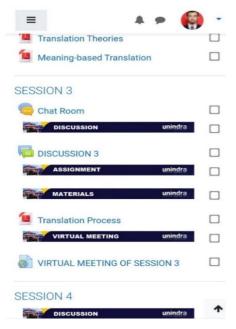


Figure 2. Features of learning activities in the LMS

In this chart every course should have some learning outputs. The lecturers set the course study from learning process to learning output. In active virtual learning, students should take turn in giving presentation and manage the group-discussion. There are some teaching methods of bloom's taxonomy in Flipped Virtual Classroom:

- Project. Moodle Translation Project (MTP). This
 translation project is measured activities that group of
 students should design during the translation course.
 Such as making subtitles, translating manual book or
 medical instruction, making a review and describing
 every part of application, translating textual stories into
 digital stories, and last but not least translating textual
 books into pictural books.
- 2. Activities. Moodle Interactive Learning Activities (MILA). There are many activities that Moodle provides for e-learning activities. The activities are based on Basic Translation Skills, i.e. Reading Comprehension Skills, Researching Skills, Analytical Skills, and Composing Skills. In Moodle, students could chat each other and to the lecturer and do the

- discussion and assignment. They also could give comments and feedbacks to their friends' answers.
- 3. Collaboration. Moodle Collaborative Learning Activities (MCLA). Students are trained to use Online Microsoft Word in order to create an article of translation problems or translation journals. They should be familiar with Mendeley and Scimago to support their writing. They need to be more independent by using free digital library for extended reading. And finally, lecturer could give comments and feedbacks on their Online Microsoft Words through the shared links.
- 4. E-conference. Moodle Virtual Meeting (MVM). Lecturers and Students could bring the e-learning synchronously by using ZOOM, CISCO Webex Meetings, Google Meet, Microsoft Teams. This virtual meeting is used for introduction, explanation of the whole course at the beginning, and students' presentations. Lecturers could upload videos or YouTube links any time and any where for additional information to students. Students who can't join the virtual meeting, they still can follow form YouTube.

The Implementation of Flipped Learning

The flipped learning model is a student-centered model aimed at increasing student engagement, understanding and retention by reversing the synchronous virtual classroom teaching approach into the asynchronous virtual classroom teaching approach. This model is a more efficient use of class time, by focusing on the practical application of knowledge during class. Educators with large classes can particularly benefit from the technique.

The potential to increase student engagement and motivation is a significant driving force in the provision of flipped classrooms. Innovations and advances in technology have allowed educators to create resources to foster meaningful engagement and many platforms and services provide a means of collating useful resources for re-use by educators and students. This increased or adapted use of technology coupled with a more student-centred approach can help to facilitate learning for students with varying learning preferences or styles.

The flipped classroom model provides more opportunities to offer one-to-one interaction with students to increase the development of higher-order skills through analysis, evaluation and creation, critical thinking and problem solving. This interaction is often peer-to-peer, providing educators with more opportunities to ensure knowledge acquisition and understanding, particularly in large groups. By focusing on the quality of the interaction rather than the quantity student performance can be improved.

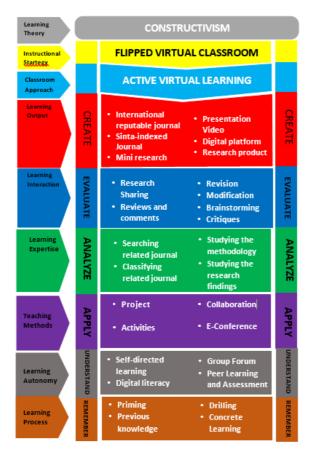


Figure 3. The Flipped Virtual Classroom

The flipped classroom model has the potential of benefitting diverse learners due to the student-centered approach that is the focus of the model. By providing students with foundational information asynchronously, which they can access on demand and review as many times as they need, they have more opportunities to understand and improve their recall before they come to class. In the Flipped Learning Network, the majority of lecturers who have flipped their class noticed improvement in the grades as well as the attitudes of their students. The Flipped Learning Model gives students much time to study the material and make notes and questions to be discussed in the discussion forum, so they will be well prepared for the next discussion. Almost every teacher who tried this model wants to flip classes again. Let us summarize the key benefits that are behind this success.

CONCLUSION

This study attempts to investigate the effects of moodle-based flipped learning model in teaching translation to increase basic translation skills and twenty-first century skills. Having identified a gap in task-based and project-based learning in translation courses, this study attempts to bridge this gap by investigating the effects of basic translation skills and twenty-first century skills on university students' annotated translation and translation qualities. This is carried out on four basic translation skills

and twenty-first century skills, but somehow this course integrates moodle as a medium of instruction and SmartCAT as a collaborative translation tool. The results of this study show that students who experienced moodle-based flipped learning model are outperformed than those who experienced conventional learning.

The result showed that the significance score of the independent samples t-Test (p < 0.05), it can be concluded that there is an effect of moodle-based flipped learning model compared with traditional lecture in translation course. This present study has a number of theoretical and pedagogical implications for novice translators and also professional translators and educators. This study provided a learning scenario for students and lecturers to bring online learning more efficient and meaningful. Many studies have already reported that flipped learning model had a possitive effect on educational outcomes, such as accelerating self-learning, improving academic performance, developing critical thinking skills and increasing positive feedback. This learning approach enables students to manage their own learning through completion of preparatory work, interactive videos, virtual chat room and online examination. It also frees up actual class time for robust discussion and assigned problemsolving activities, learning project for learning outcome. This learning scenario may help students to improve selfefficacy through self-studying, problem-solving, project collaborating and communication skills that are recommended by university.

This study indicates that moodle-based flipped learning model in teaching translation course to increase basic translation skills and twenty-first century skills might help students improve in knowledge, skills, self-learning, learning satisfaction and enthusiasm. This research is to focus on how the translation process begins and ends through a translation training rather than telling the students to translate without the four basic translation skills (or it is called product-oriented outcome). Moodle-based flipped learning model is recommeded in university level and also make the lecturers possible to share meaningful dictionaries, books, journals, magazines that might be applicable in translation course by using discussion forum, chat bubbles, personal message. Finally, students will get many opportunities to potentialize their skills in translation and also their language proficiencies.

REFERENCE

Alfadly, A. A. (2013). The efficiency of the "Learning Management System (LMS)" in AOU, Kuwait, as a communication tool in an E-learning system. International Journal of Educational Management, 27(2), 157–169. Retrieved from

- http://dx.doi.org/10.1108/09513541311297577 Downloaded.
- Alizadeh, I. (2019). Using an LMS in teaching English: A qualitative content analysis of medical sciences students' evaluations and suggestions. Qualitative Report, 24(11), 2851–2873. Retrieved from https://nsuworks.nova.edu/cgi/viewcontent.cgi?arti cle=3613&context=tqr.
- Calvo, E. (2015). Scaffolding translation skills through situated training approaches: Progressive and reflective methods. Interpreter and Translator Trainer, 9(3), 306–322. https://doi.org/10.1080/1750399X.2015.1103107.
- Chang, D. F., Huang, Y. L., & Wu, B. (2017). Analyzing the functions and benefits of using mobile facebook as a supplemental LMS in higher education. Journal of Advanced Computational Intelligence and Intelligent Informatics, 21(6), 971–979. https://doi.org/10.20965/jaciii.2017.p0971.
- Joo, Y. J., Kim, N., & Kim, N. H. (2016). Factors predicting online university students' use of a mobile learning management system (m-LMS). Educational Technology Research and Development, 64(4), 611–630. https://doi.org/10.1007/s11423-016-9436-7.
- Kasim, N. N. M., & Khalid, F. (2016). Choosing the right learning management system (LMS) for the higher education institution context: A systematic review. International Journal of Emerging Technologies in Learning, 11(6), 55–61. https://doi.org/10.3991/ijet.v11i06.5644.
- Kim, T., Cho, J. Y., & Lee, B. G. (2013). Evolution to smart learning in public education: a case study of Korean public education. In IFIP Advances in Information and Communication Technology, 395, 170–178. https://doi.org/10.1007/978-3-642-37285-8 18.
- Lai, C. L., & Hwang, G. J. (2016). A self-regulated flipped classroom approach to improving students' learning performance in a mathematics course. Computers and Education, 100, 126–140. https://doi.org/10.1016/j.compedu.2016.05.006.
- Mas'ud, H., & Surjono, H. D. (2018). The implementation of flipped classroom learning model using moodle to increase students' higher order thinking skills. Journal of Educational Science and Technology (EST), 4(3), 187–194. https://doi.org/10.26858/est.v1i1.6521

- McLaughlin, J. E., Roth, M. T., Glatt, D. M., Gharkholonarehe, N., Davidson, C. A., Griffin, L. M., ... Mumper, R. J. (2014). The flipped classroom: A course redesign to foster learning and engagement in a health professions school. Academic Medicine, 89(2), 236–243. https://doi.org/10.1097/ACM.000000000000000086.
- Mellinger, C. D. (2017). Translators and machine translation: knowledge and skills gaps in translator pedagogy. Interpreter and Translator Trainer, 11(4), 280–293. https://doi.org/10.1080/1750399X.2017.1359760.
- Nouri, J. (2016). The flipped classroom: for active, effective and increased learning especially for low achievers. International Journal of Educational Technology in Higher Education, 13(1). https://doi.org/10.1186/s41239-016-0032-z.
- O'Sullivan, D., Krewer, F., & Frankl, G. (2017).

 Technology enhanced collaborative learning using a project-based learning management system.

 International Journal of Technology Enhanced Learning, 9(1), 14–36. https://doi.org/10.1504/IJTEL.2017.084085
- Tan, C., Yue, W.-G., & Fu, Y. (2017). Effectiveness of flipped classrooms in nursing education: Systematic review and meta-analysis. Chinese Nursing Research, 4(4), 192–200. https://doi.org/10.1016/j.cnre.2017.10.006.
- Wang, G., Zhao, H., Guo, Y., & Li, M. (2019). Integration of flipped classroom and problem based learning model and its implementation in university programming course. 14th International Conference on Computer Science and Education, ICCSE 2019, (Iccse), 606–610. https://doi.org/10.1109/ICCSE.2019.8845525.
- Wang, Y., & Chen, N. S. (2009). Criteria for evaluating synchronous learning management systems: Arguments from the distance language classroom. Computer Assisted Language Learning, 22(1), 1–18. https://doi.org/10.1080/09588220802613773.
- Williams van Rooij, S. (2012). Open-source learning management systems: a predictive model for higher education. Journal of Computer Assisted Learning, 28(2), 114–125. https://doi.org/10.1111/j.1365-2729.2011.00422.x.
- Yuen, A. H. K., Cheng, M., & Chan, F. H. F. (2019). Student satisfaction with learning management systems: a growth model of belief and use. British Journal of Educational Technology, 50(5), 2520–2535. https://doi.org/10.1111/bjet.12830.
 - DOI: http://dx.doi.org/10.30998/scope.v7i1.13891