Pemanfaatan Chi Square dan Ensemble Tree Classifier pada Model SVM, KNN dan C4.5 dalam Penjualan Online

Prastika Indriyanti(1), Wawan Gunawan(2*)

(1) Universitas Mercu Buana
(2) Universitas Mercu Buana
(*) Corresponding Author

Abstract


This research aims to assist MSMEs in overcoming problems in online sales. Currently, sellers only prepare stock without knowing how well the products are sold in their market segment. In the city of Tangerang alone, there are 222,602 MSMEs with various product categories. Therefore, besides utilizing offline sales, business actors should also engage in online sales. This research conducts feature selection using the Chi-Square method and Ensemble Tree Classifier to select the top 6 and 10 features. The SVM, KNN, and C4.5 algorithms are used to build prediction models based on the selected features. Using feature selection, it was found that the influential features are Estimated Shipping Cost, Shipping Cost Paid by Buyer, Total Product Price, and Estimated Shipping Cost Discount. The evaluation results using the three algorithms, SVM, KNN, and C4.5, indicate that the highest accuracy value is obtained when using the C4.5 model with data from the ensemble tree classifier with 6 features at 0.86%, followed by the C4.5 model with 10 features, KNN with 6 features, and KNN with 10 features, all of which source data from the ensemble tree classifier with an accuracy value of 0.85%.

Full Text:

PDF

References


K. Indonesia, “UMKM Indonesia,” 2024. https://kadin.id/data-dan-statistik/umkm-indonesia/.

P. L. G. Canggih Gumanky Farunik, “Tantangan dan Peluang Bisnis dalam Beradaptasi dengan Pasar Generasi Z,” J. Ekon. dan Biania, vol. 3, no. 1, pp. 487-496., 2023.

“Daftar UMKM Indonesia,” KEMENKOPUKM, 2024. https://umkm.depkop.go.id/.

A. Yuliani, “Kemenkop UKM: 3,79 Juta UMKM Sudah Go Online,” KOMINFO. https://www.kominfo.go.id/content/detail/11526/kemenkop-ukm-379-juta-umkm-sudah-go-online/0/sorotan_media.

UMKM, “Peningkatan Jumlah UMKM Tangerang yang Go Digital,” GETI Media, 2023. https://getimedia.id/2023/12/13/peningkatan-jumlah-umkm-tangerang-yang-go-digital/.

R. Putriana and S. Kholil, “Analisis Trik dan Teknik Marketing Generasi Z dalam Mempromosikan Produk Somethinc di Instagram,” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 2, pp. 1676–1684, 2024, [Online]. Available: https://journal.stmiki.ac.id.

H. Wijoyo, I. Indrawan, Y. Cahyono, A. L. Handoko, and R. Santamoko, Generasi Z Dan Revolusi Industri 4.0, vol. 1. 2020.

D. A. Mukhsinin, M. Rafliansyah, S. A. Ibrahim, R. Rahmaddeni, and D. Wulandari, “Implementasi Algoritma Decision Tree untuk Rekomendasi Film dan Klasifikasi Rating pada Platform Netflix,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 570–579, 2024, doi: 10.57152/malcom.v4i2.1255.

R. N. Ramadhon, A. Ogi, A. P. Agung, R. Putra, S. S. Febrihartina, and U. Firdaus, “Implementasi Algoritma Decision Tree untuk Klasifikasi Pelanggan Aktif atau Tidak Aktif pada Data Bank,” Karimah Tauhid, vol. 3, no. 2, pp. 1860–1874, 2024, doi: 10.30997/karimahtauhid.v3i2.11952.

M. Arif Saifudin, H. Endah Wahanani, and A. Junaidi, “Implementasi Algoritma Asosiasi Fp-Growth Dan Klasifikasi K-Means Terhadap Pola Pembelian Konsumen Di Marketplace Shopee,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 764–771, 2024, doi: 10.36040/jati.v8i1.8848.

B. Harmadi, P. S. Matematika, and F. Sains dan Teknologi, “Penerapan Algoritma Decision Tree Dalam Segmentasi Customer,” vol. 12, no. 2, pp. 315–322, 2022.

A. P. A. S. M R, J. Sodik, M. Saripudin, S. M. Rejeki, and U. Firdaus, “Kajian untuk Segmentasi Customer Bank dengan Algoritma K-Means,” Karimah Tauhid, vol. 3, no. 3, pp. 3899–3906, 2024, doi: 10.30997/karimahtauhid.v3i3.12318.

R. Novalana and wasino, “Pengaruh Persepsi Harga, Kualitas Pelayanan Dan Lokasi Terhadap Keputusan Pembelian Di Leora Kopi,” J. Panor. Nusant., vol. Vol.18, no. Issue. 2, pp. 1–11, 2023, [Online]. Available: https://ejournal.asaindo.ac.id/index.php/panoramanusantara/issue/view/185.

T. Tukino, “Analisis Prediksi Penjualan Sayuran Hidroponik Menggunakan Algoritma C4.5 pada PT Batam Indo Agri Perkasa,” J. Desain Dan Anal. Teknol., vol. 2, no. 2, pp. 129–137, 2023, doi: 10.58520/jddat.v2i2.30.

F. Firmansyah and O. Nurdiawan, “Penerapan Data Mining Menggunakan Algoritma Frequent Pattern - Growth Untuk Menentukan Pola Pembelian Produk Chemicals,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 547–551, 2023, doi: 10.36040/jati.v7i1.6371.

I. H. Pratama and U. Salamah, “Perbandingan Algoritma K-Nearest Neighbor Dan Support Vector Machine Untuk Menentukan Prediksi Produk-Produk Terlaris Pada Toko Madura Kecamatan Pondok Aren,” J. Tek. Inform. Kaputama, vol. 6, no. 2, pp. 846–858, 2022, [Online]. Available: https://jurnal-backup.kaputama.ac.id/index.php/JTIK/article/view/1163.

G. Taufik and D. Jatmika, “Penerapan Algoritma C4 . 5 Untuk Klasifikasi Keberhasilan Pengiriman Barang,” pp. 12–26, 2021.




DOI: http://dx.doi.org/10.30998/faktorexacta.v17i3.24149

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

template doaj grammarly tools mendeley crossref SINTA sinta faktor exacta   Garuda Garuda Garuda Garuda Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Flag Counter

site
stats View Faktor Exacta Stats


pkp index